一、肝纤维化的基因治疗(论文文献综述)
侯丽爽[1](2021)在《芝麻活性成分调控FXR/SHP/LXR信号改善肝纤维化进程的机制研究》文中进行了进一步梳理目的:肝纤维化一种结缔组织异常增生的病理过程,伴随胶原蛋白大量合成及细胞外基质(extracellular matrix,ECM)过度沉积。诱因主要包括酒精、药物、代谢紊乱、病毒感染、免疫性肝炎和胆汁淤积等。在世界范围内,肝纤维化引起的肝硬化和肝癌,是肝病发病率和死亡率的主要原因。肝病的发病率逐年增加,使我国成为肝病大国,严重损害人民健康,加重社会负担。目前的疗法,包含药物及纤维源性标记物等技术。但需要结合大量临床评估,才能确保其有效性。化学合成药物在改善病毒性肝炎方面已有临床报道,但对纤维结缔组织的增生,仍缺乏针对性。中药组分或有效成分,在抗肝纤维化方面展现明显优势。课题组发现天然植物芝麻,具有抗炎抗氧化药理活性,推测可能对肝病有改善作用。为此,选择其主要活性成分芝麻素和芝麻酚,验证对肝纤维化的改善作用。由于芝麻素和芝麻酚在抗肝纤维化中的作用机制仍然不明确,制约了新药的开发与应用。因此,本研究开展了芝麻素和芝麻酚在体内外抗肝纤维化的研究,解析抗肝纤维化的机制,为肝纤维化的临床治疗提供药理学参考,并为新药的研发提供理论基础。芝麻素(sesamin,SES)和芝麻酚(sesamol,DER)是一种天然的木酚素类化合物,具有抗炎、抗氧化等多种药理活性。但对肝纤维化的干预效果还不明确。因此,本课题主要研究SES和DER改善肝纤维化的相关机制。具体为:SES如何调节法尼醇X受体(farnesoid X receptor,FXR)和小异二聚体伴侣(short heterodimer partner,SHP),在体内外干预炎症及肝纤维化;DER介导FXR/肝X受体(liver X receptor,LXR)信号调控硫代乙酰胺(thioacetamide,TAA)或雷帕霉素(rapamycin,RA)诱导的肝损伤、炎症、自噬及肝纤维化的机制研究;DER抑制大鼠肝星状细胞(hepatic stellate cells-T6,HSC-T6)的活化,调控FXR/LXR信号串扰,参与THP-1巨噬细胞及人肝星状细胞(LX-2)的交互,抑制肝星状细胞活化。方法:(1)在SES改善TAA诱导的肝纤维化模型中,采用C57BL/6小鼠,分为6组:正常组、TAA组、TAA和SES(20 mg/kg)组、TAA和SES(40mg/kg)组、TAA和Curcumin(Cur)(20 mg/kg)组以及单独的SES组。除正常组和单独SES组,其他组小鼠腹膜内注射TAA连续5周,第1周每周3次100 mg/kg,第2至5周每周两次200 mg/kg。此外,在给药组中,从第二周开始连续28天,以口服灌胃法对小鼠进行SES或Cur治疗。同时,正常组和TAA组施用等量生理盐水4周。在实验结束后,首先检测血清生化指标谷草转氨酶(AST)及谷丙转氨酶(ALT)水平。使用天狼星红染色(Sirius Red),三色胶原染色(Masson)及苏木精-伊红染色法(H&E),检查肝脏组织病理学变化。通过免疫组织化学染色、免疫荧光染色,检测相应抗体的表达。最后,采用蛋白印记与实时荧光定量逆转录聚合酶链反应(Quantitative Reverse Transcription PCR,q RTPCR)结合的方式,检测纤维化及炎症的水平。在体外,先用TGF-β激活HSCs2h,然后给予SES(3.125,6.25,12.5μM),FXR的激动剂GW4064(2μM)或FXR的抑制剂Gugglusterone(50μM)处理2h。通过免疫荧光,蛋白印记,q RT-PCR等方法,检测FXR,SHP,α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA),核苷酸结合域-(NOD-)样受体蛋白3(nucleotide-binding domain-(NOD-)like receptor protein 3,NLRP3),白介素-1β(interleukin-1β,IL-1β),白介素-1α(interleukin-1α,IL-1α)等蛋白的表达情况。采用特异性基因阻断FXR(si FXR)和SHP(si SHP)转染HSCs,通过蛋白印记和q RT-PCR检测相关蛋白的表达。(2)在DER改善TAA诱发肝纤维化模型中,采用C57BL/6小鼠,随机分为6组:正常组、TAA组、TAA和DER(10 mg/kg)组、TAA和DER(20 mg/kg)组、TAA和Cur(20 mg/kg)组,及单独的DER(20 mg/kg)组。TAA给药方式同SES。在给药组中,从第二周开始连续28天,以口服灌胃法对小鼠进行DER(10、20 mg/kg)治疗。同时,正常组、TAA组小鼠,给予等量生理盐水4周。在自噬诱导肝纤维化的模型中,将鼠随机分为5组:正常组、TAA组、TAA和DER(20 mg/kg)组、TAA和RA(2 mg/kg)组、TAA和3-甲基腺嘌呤(3-Methyladenine,3-MA)(10 mg/kg)组。TAA组的给药方式同SES。从第2至5周,除正常组和TAA组,另外二组每周3次腹腔注射RA或3-MA。实验结束后,检测血清生化指标及组织病理学变化。采用蛋白印记与荧光定量逆转录聚合酶链反应(Reverse Transcription PCR,RT-PCR)、q RT-PCR的方法,测定纤维化指标和炎症因子的表达。体外模型,先用TGF-β激活HSCs,然后给予DER(3.125,6.25,12.5μM)进行处理,检测FXR,LXRα/β,微管相关蛋白轻链3α/β(Microtubule-associated protein light chain 3α/β,MAPLC3α/β)和泛素结合蛋白自噬受体(Sequestosome 1,SQSTM1/P62)等相关蛋白的表达。利用转化生长因子-β(transforming growth factor-β,TGF-β)激活HSCs后,联合RA和3-MA,给予DER作用后,检测了相关蛋白的表达。另外,用脂多糖(Lipopolysaccharide,LPS)(0-100 ng/ml)刺激THP-1细胞,收集上清液LPS条件培养基,联合RA激活LX-2细胞。给予DER或3-MA孵育后,检测自噬蛋白及炎症蛋白的表达。用FXR激动剂GW4064,LXR激动剂GW3965及DER处理LX-2细胞,通过RT-PCR及细胞荧光,检测自噬蛋白,α-SMA及炎症相关的蛋白表达。结果:(1)SES显着降低了的ALT、AST水平,改善了TAA导致的组织病理学变化。明显抑制了α-SMA、I型胶原(type I collagen,collagen-I)、金属蛋白酶-1的组织抑制剂(tissue inhibitor of metalloproteinase-1,TIMP-1)/基质金属蛋白酶-13(matrix metalloproteinase-13,MMP13)等纤维化相关标志蛋白及炎症细胞因子的浸润,并上调了FXR、SHP的表达。体外结果显示,SES能明显抑制由TGF-β刺激引起的纤维化标志蛋白的表达。通过蛋白印记,q RT-PCR,细胞免疫荧光方法,证实了SES对NLRP3、caspase-1和IL-1β等炎症因子的调控作用。SES和FXR的激动剂GW4064都能明显提高FXR、SHP的表达,下调α-SMA、IL-1α和IL-6的表达。(2)DER显着降低了TAA引起的血清生化指标ALT、AST水平,改善了组织病理学变化,明显抑制了纤维化标志蛋白及自噬蛋白的表达。DER还下调了炎症细胞因子含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase-1,caspase-1)和IL-6等的表达并抑制NLRP3炎性小体的激活。DER与自噬抑制剂3-MA具有相同的功效,显着下调了ALT、AST水平,改善了TAA或RA导致的组织病理学变化。体外结果显示,DER明显抑制了由TGF-β刺激引起的HSCs中纤维化标志蛋白及炎症细胞因子的表达。DER处理后,逆转了TGF-β激活HSCs引起的FXR和LXRα/β蛋白表达的下调。使用TGF-β和RA联合刺激HSCs,DER和3-MA功能相似,抑制了自噬蛋白和炎症细胞因子的释放。收集LPS刺激THP-1细胞的上清液孵育LX-2细胞,DER和3-MA抑制了自噬蛋白、α-SMA和炎症细胞因子的表达。DER通过基因阻断自噬相关蛋白(autophagy Related Protein 7,ATG7)(si ATG7)同样抑制了LPS条件培养基引起LX-2细胞的活化。此外,DER同GW4064或GW3965功能相似,上调了LX-2细胞中FXR和LXR的表达,抑制了自噬蛋白及NLRP3炎症小体的活化。基因沉默FXR(si FXR)和LXR(si LXR)后,DER或3-MA同样抑制了LX-2细胞的活化。结论:(1)SES通过介导FXR/SHP信号通路,抑制了NLRP3炎症小体的活化及炎症细胞因子的表达,减少ECM的沉积及HSCs的活化。通过基因沉默FXR及SHP,验证了FXR和SHP的相互调控作用,并且,SES充当FXR的激动剂,激活FXR及SHP的表达。此外,SES保护肝脏免受TAA毒性的影响,防止胶原蛋白的累积,减少炎症因子对肝脏的损害及组织病理学的变化,改善了肝纤维化。(2)DER通过靶向FXR/LXR信号,参与LX-2细胞和THP-1细胞的交互,抑制LX-2细胞的自噬反应、减少NLRP3炎症小体的活化、caspase-1的裂解及炎症细胞因子IL-1β的产生。DER的作用同3-MA,抑制了HSCs的激活及自噬,降低了TAA引起的纤维化标志蛋白的表达,改善组织病理学的变化,减少NLRP3及炎症因子的浸润,抑制了肝纤维化的发展。此外,DER同3-MA都能抑制肝脏自噬反应,缓解RA引起的自噬对肝脏的损害,减少肝脏炎症及组织病理的改变,发挥肝保护的作用。总之,本研究证实了天然的木酚素类化合物SES和DER,参与FXR/SHP/LXR信号交互,具有改善肝纤维化和抑制炎症的良好功效,防止TAA及自噬对肝脏造成的损伤。DER通过调控巨噬细胞与HSCs细胞间的串扰,发挥改善肝纤维化的作用。SES和DER可作为改善肝纤维化的理想调节剂,并具备天然药物独特的生物活性优势。未来,我们在SES和DER的药代动力学,生物利用度及安全性评价等方面,将会做更多的应用及研究,为临床开发安全、有效、创新的抗肝纤维化药物,奠定良好的理论基础。
张兴旺[2](2021)在《CCL4诱导小鼠肝纤维化模型基因芯片整合分析及核心基因的筛选验证研究》文中指出背景与目的:肝硬化(Liver cirrhosis)是肝脏在慢性炎症刺激的作用下肝小叶重建、假小叶和纤维结节形成所导致的病理改变,可能进一步发展为肝癌。肝硬化是一个世界性的卫生问题,它可由多种病因引起,在肝硬化的形成过程中,肝纤维化(Liver fibrosis)是其必经阶段。目前的研究普遍认为肝纤维化是可逆的,随着测序技术的进步和基因数据库中测序数据的不断增加,人们通过对数据的分析发现在肝纤维化病变过程中涉及到部分基因及通路的改变,并且在针对性的增强或抑制某些基因的表达后,肝纤维化得到了不同程度的逆转,这些实验证明通过调控基因表达来治疗肝纤维化是可行的。目前已有许多相关研究揭示了一些重要的基因及通路,如TGF-β(Transforming growth factor-β)通路等,但目前尚无特异性治疗肝纤维化的药物,因此在疾病进展过程中针对基因表达改变的研究仍存在一定的空白和进一步探索的空间。本研究使用生物信息学方法探索并分析小鼠肝纤维化进程中的关键性致病基因,并通过PCR实验验证生物信息学分析结果,为肝纤维化的早期诊断和个体化治疗提供依据。方法:1.在NCBI(National Center for Biotechnology Information)的GEO(Gene Expression Omnibus)数据库中筛选并下载CCL4诱导的小鼠肝纤维化基因芯片数据GSE27640和GSE55747,使用R语言对芯片数据进行进一步的探索,找出其中的差异表达基因,使用David数据库分析差异表达基因参与的细胞功能及通路,使用Cytoscape软件构建调控网络筛选出位于结点的10个核心致病基因,并在NCBI的Gene数据库中查询核心致病基因的功能及研究进展;2.使用CCL4诱导构建小鼠肝纤维化模型,取实验组小鼠肝硬化组织及对照组小鼠健康肝脏健康组织通过PCR实验观察基因表达情况验证我们生物信息学方法分析的结果。结果:1.将两组GEO数据整合分析后得到117个共同差异表达基因(其中108个基因表达上调,9个基因表达下调)。2.对共同差异表达基因进行功能富集分析后发现差异表达基因功能和信号通路在以下几个方面明显富集:1)在生物学进程(biological process,BP)中,共同上调基因明显富集在凋亡过程、转化、蛋白质折叠等过程。2)在分子功能(molecular function,MF)里,共同上调基因在蛋白质结合、poly(A)RNA结合、蛋白质同源二聚化活性等功能中明显富集。3)在细胞组分(cellular component,CC)里,共同上调基因主要见于细胞质、胞外体、细胞外间隙等。对差异表达基因进行信号通路富集分析结果显示共同上调基因主要富集在以下通路:内质网中的蛋白质加工、精氨酸和脯氨酸代谢等通路。3.对差异表达基因绘制蛋白质-蛋白质互作(protein-protein interaction,PPI)网络图,使用Cytoscape软件最终筛选出10个核心致病基因:Lgals3,Actb,Anxa5,Lyz2,Sec61a1,Anxa2,Isg15,Timp1,P4hb,Rpl37。4.PCR验证结果显示筛选出的10个核心基因中有9个在转录水平表达与我们在GEO数据库中下载的基因芯片数据生物信息学分析的结果基本相符。结论:1.整合两组基因芯片数据使用生物信息学方法分析我们得到了117共同差异表达基因,其中上调的108个基因参与细胞凋亡、蛋白质结合等过程;2.从筛选出的共同差异表达基因中我们筛选出了10个核心致病基因,根据在NCBI的Gene数据库中查询到的研究结果如下:1)已明确有文献报道与肝纤维化有关的基因如Lgals3、Actb、Timp-1,2)文献报道与其他器官组织纤维化相关的基因如Lyz2、Anxa2,3)目前研究结果未发现与肝纤维化相关的基因如Anxa5、Isg15、P4hb、Rpl37、Sec61a1;3.通过构建小鼠肝纤维化模型并进行PCR实验,验证了我们生物信息学分析的结果,证明我们筛选出的核心致病基因,可作为肝纤维化诊断、治疗的靶标。
周怡驰[3](2021)在《柴芪益肝方治疗肝纤维化的临床和实验研究》文中提出中国是肝病大国,多种肝病高发,肝纤维化作为肝病研究和治疗的重要领域,越来越受到重视。肝纤维化是肝脏修复肝损伤引起的异常结缔组织增生和细胞外基质过度沉积的病理改变。肝纤维化存在于大多数慢性肝病中,是慢性肝病向肝硬化发展的必经阶段,甚至可持续进展为肝硬化、肝癌,给患者生命健康带来严重威胁。研究肝纤维化的病因及发病机制、寻找有效的治疗靶点,对于阻止肝病的发展、维护患者的生命健康有很大的意义。近年来,肝纤维化的病理分子生物学机制、临床诊疗技术等取得了长足发展。但目前西医对于抗纤维化疗效尚不确切,缺乏有效的治疗手段。中医药治疗肝纤维化具有确切的优势,已有多种注册适应证为肝纤维化的中成药上市。柴芪益肝方由导师胡世平教授所创,是治疗慢性乙型肝炎肝纤维化的经验方,前期临床和实验研究发现对肝纤维化有较好疗效,但其作用机制尚不清楚。胡教授现任北京中医药大学深圳医院党委书记,广东省名中医,全国基层名老中医师承项目指导老师,深圳市地方级领军人才,获评“南粤最美中医”,从事中医药防治慢性肝病的临床与科研工作30多年,擅长中医、中西医结合治疗肝脏疾病,形成了独特的学术思想体系。目的结合临床回顾性研究、网络药理学预测和动物实验探讨柴芪益肝方治疗肝纤维化的疗效与作用机制,为该方的进一步开发应用提供依据,并分析总结导师胡世平教授“推陈致新”的学术思想及其在柴芪益肝方组方思路中的应用。方法1、临床研究:通过回顾性研究方法,收集2018年1月1日至2021年2月3日期间在北京中医药大学深圳医院肝病科门诊及住院部诊断为慢性乙型肝炎患者的病例资料,并筛选出符合本研究标准的慢性乙型肝炎肝纤维化肝郁脾虚型患者。根据患者所服药物分为常规治疗组和CQYG组,收集所有患者治疗12个月前后的指标,包括主要指标:肝脏硬度值(LSM)、纤维化-4指数(FIB-4)、天门冬氨酸氨基转移酶和血小板比率指数(APRI)、乙肝病毒表面抗原(HBsAg)、乙型肝炎病毒(HBV-DNA)定量;次要指标:谷丙转氨酶(ALT),谷草转氨酶(AST),总胆红素(TBiL),谷氨酰转酞酶(GGT),白蛋白(ALB),将所有检测指标进行治疗前后的组内与组间比较。2、网络药理学:检索 TCMSP、TCMID、Swiss Target Prediction、OMIM、Gene Cards等数据库,筛选CQYG治疗肝纤维化的活性成分和潜在作用靶点。借助Cytoscape软件和String数据库,分别构建“药物-成分-靶点-疾病”网络和蛋白互作PPI网络,并进行拓扑学分析,筛选关键药效分子和核心靶点。运用Autodock vina软件进行分子对接,并基于R语言对作用靶点进行GO和KEGG富集分析。3、动物实验:选取50只6周龄SPF级C57BL/6雄性小鼠,随机抽取10只分别纳入空白对照组(CTL)、肝纤维化模型组(Model)、柴芪益肝方低剂量组(CQYG-L)、柴芪益肝方高剂量组(CQYG-H)和水飞蓟素治疗组(Silymarin),共5组。四氯化碳(carbontetrachloride,CCl4)腹腔注射建立小鼠肝纤维化模型:除空白对照组外,其余各组小鼠腹腔注射含15%CCl4的橄榄油5ml·kg-1,每周2次,连续注射8周。从造模第1天起,柴芪益肝方低、高剂量组小鼠分别灌胃给予0.37 g·kg-1·d-1、0.74 g·kg-1·d-1的柴芪益肝方,水飞蓟素组给予100 mg·kg-1·d-1灌胃。实验结束,摘取所有小鼠肝脏、收集血清,对各组小鼠肝组织进行HE、天狼星红、Masson染色;用自动生化分析仪检测血清AST和ALT的含量;ELISA法检测肝组织中MDA、SOD、GSH-Px和Hyp水平;免疫组化法检测肝组织中α-SMA、Collagen I、Vimentin的表达;免疫荧光法检测肝组织中Ki67+和Lgr5+细胞;提取各组肝组织RNA和蛋白,Real-time PCR和Western blot分别检测肝纤维化小鼠肝组织中NF-κB、TGF-β/Smad、Wnt/β-Catenin信号通路相关靶标mRNA和蛋白表达。结果1、临床研究:共纳入符合标准的患者203人,其中,常规治疗组纳入101人,年龄最大者76岁,最小22岁,平均年龄(41.34±0.90)岁;CQYG组纳入102人,年龄最大者67岁,最小27岁,平均年龄(43.13±0.78)岁,两组年龄无统计学差异(P>0.05),具有可比性。(1)无创肝纤维化指标(LSM、FIB-4、APRI)在两组患者自身治疗前后比较,以及治疗后的组间比较,均无显着性差异(P>0.05),但两组治疗后LSM均较治疗前有降低趋势。(2)两组患者自身前后比较,乙型肝炎病毒(HBV-DNA)定量和乙肝病毒表面抗原(HBsAg)治疗前和后均无显着性差异(P>0.05);CQYG组较常规治疗组治疗后HBsAg显着性降低(P<0.05),CQYG组治疗后HBV-DNA定量和HBsAg较治疗前均有下降趋势。(3)两组患者自身治疗前后血清肝功能指标(ALT、AST、GGT、TBiL、ALB)均在正常范围内,治疗后组间比较肝功能均无显着性差异(P>0.05)。2、网络药理学预测:共获得121种CQYG治疗肝纤维化的潜在活性成分和257个对应的作用靶点,并筛选出14种关键药效分子及28个核心靶点。点度中心性值前10的核心靶点和关键药效分子具有较好的结合活性。GO和KEGG结果主要涉及炎症反应、氧化应激、成纤维细胞增殖、内皮细胞增殖、调节脂质代谢活动、血管生成、肝再生等生物学过程及TNF信号通路、Th17细胞分化信号通路、IL-17信号通路、PI3K/Akt信号通路、Wnt信号通路、NF-κB信号通路等。3、动物实验研究:与模型组相比,CQYG各组和水飞蓟素组小鼠肝组织形态和胶原沉积较模型组改善,水飞蓟素组和CQYG-H小鼠血清ALT、AST水平均显着降低(P<0.01);CQYG高剂量组肝组织MDA和Hyp的含量显着低于模型组(P<0.05),SOD和GSH-Px含量显着高于模型组(P<0.05);免疫组化结果显示,CQYG组和水飞蓟素组α-SMA、CollagenI、Vimentin阳性表达区域较模型组少;免疫荧光结果显示,柴芪益肝方组Ki67阳性细胞和Lgr5阳性细胞数量均较模型组有增多趋势;CQYG组肝组织中p-NF-κBp65、TNF-α、IL-6、IL-1β蛋白表达水平较模型组显着降低(P<0.05);与模型组相比,CQYG-H 肝组织 CollagenI、TGF-β、TNF-α、IL-1βmRNA 的表达水平以及 Collagen I、α-SMA、TIMP-1、TGF-β、磷酸化 Smad2/3、Smad2/3、Smad4、Wnt3a、β-Catenin 蛋白表达均较模型组有不同程度降低,而MMP-9、Smad7蛋白表达水平显着升高(P<0.05)。结论1、临床研究:柴芪益肝方加减联合常规治疗有降低慢乙肝肝纤维化患者肝脏硬度值、HBV-DNA和HBsAg含量的趋势,且在降低HBsAg定量上优于单纯常规治疗。2、网络药理学:柴芪益肝方可能通过槲皮素、白藜芦醇、山奈酚等活性成分作用于丝裂原激活蛋白激酶MAPK1/3/8、原癌基因酪氨酸激酶Src、激活子蛋白Jun等靶点,以及TNF信号通路、Th17细胞分化信号通路、IL-17信号通路、PI3K/Akt信号通路、HIF-1信号通路、Rap1信号通路、Wnt信号通路、NF-κB信号通路等,调节肝脏炎症反应、氧化应激、细胞增殖、肝再生等生物学过程发挥治疗肝纤维化的作用。3、动物实验研究:柴芪益肝方能显着减轻四氯化碳诱导的小鼠肝纤维化,其作用机制可能减轻氧化应激反应、抑制NF-κB介导的炎症信号通路,下调炎症细胞因子IL-6、TNF-α、IL-1β的释放,减轻肝脏炎症,并通过调节TGF-β/Smad、Wnt3a/β-catenin信号通路,抑制肝星状细胞的活化,调节MMP-9和TIMP-1活性平衡,减少细胞外基质α-SMA、Collagen I、Hyp的合成,促进ECM降解相关。4、“推陈致新”学术思想:导师胡世平教授“推陈致新”的学术思想核心在于顺应人体本身的正气祛邪之势和气血津液各自的新陈代谢过程,协助人体自然排邪,促进疾病向愈。在肝纤维化治疗上,通过“推陈致新”,加强气化动力、调节气机升降,使病理产物消除的同时,人体气血津液正常化生。
徐俊[4](2021)在《基于肠道菌群探讨抗纤软肝颗粒防治肝纤维化的临床疗效与作用机制》文中认为目的:1.观察抗纤软肝颗粒(KXRG)对肝纤维化患者的临床疗效及对肠道菌群的调控作用,为KXRG抗肝纤维化提供循证医学证据。2.观察KXRG对CCl4诱导的肝纤维化小鼠肠道菌群、肠黏膜屏障及肝组织炎症免疫相关通路的影响。随后建立伪无菌小鼠模型,将KXRG组小鼠粪菌移植到伪无菌小鼠体内,观察KXRG是否通过改善肠道菌群影响肝内免疫及炎症相关因子,进一步探讨KXRG防治肝纤维化的作用机制,以期能为KXRG防治肝纤维化提供新的研究视角和作用靶点。方法:1.采用临床回顾性研究方法,研究KXRG对乙肝肝纤维化患者的临床疗效与肠道菌群的影响。80例乙肝肝纤维化患者分为两组,对照组(36例)患者使用恩替卡韦(ETV)治疗,治疗组(44例)使用ETV联合使用中药KXRG治疗,干预时间为6个月,比较两组患者治疗前后的肝功能、肝脏硬度值(LSM),并用16S r RNA技术比较治疗后两组患者的肠道菌群变化情况。2.采用40%CCl4橄榄油溶液间断性皮下注射8周,建立肝纤维化小鼠模型,予以KXRG水溶液(3.9g/kg)灌胃治疗。8周后,观察正常组、模型组、KXRG组小鼠体重,肝脏指数,肝功能及肠道、肝脏病理学变化;运用16S r RNA测序检测各组小鼠肠道菌群变化;运用酶联免疫吸附法检测LPS、IL-1β、IL-6、TNF-α表达;运用免疫组织化学法和RT-q PCR检测各组小鼠肠道紧密连接蛋白Claudin-1、Occludin、ZO-1蛋白及基因表达;运用免疫印迹法和RT-q PCR检测肝组织TLR4、My D88、NF-κB蛋白及基因表达。3.予以肝纤维化小鼠混合抗生素(氨苄西林1g/L、万古霉素0.5g/L、硫酸锌霉素1g/L、甲硝唑1g/L)灌胃7天,构建伪无菌小鼠模型,运用FMT将正常组、模型组、KXRG组的小鼠粪菌混悬液以200μl/只进行灌胃移植至正常组小鼠粪菌移植组(FMT-control)、模型组小鼠粪菌移植组(FMT-model)、KXRG组小鼠粪菌移植组(FMT-KXRG),以未处理的C57BL/6小鼠为空白对照组(Control),观察各组小鼠体重、肝脏指数、肝功能及肠道、肝脏病理学变化;运用酶联免疫吸附法检测LPS、IL-1β、IL-6、TNF-α表达;运用免疫组织化学法和RT-q PCR检测各组小鼠肠道紧密连接蛋白Claudin-1、Occludin、ZO-1蛋白及基因表达;运用免疫印迹法和RT-q PCR检测肝组织TLR4、My D88、NF-κB蛋白及基因表达。结果:1.临床研究结果:KXRG对乙肝肝纤维化患者临床研究共收集病例80例,其中男36例,女44例,年龄18-65岁,治疗组44例,对照组36例。(1)两组患者性别、年龄、病程时间差异及治疗前肝功能肝脏硬度值差异无统计学意义(P>0.05)。(2)KXRG对乙肝肝纤维化患者肝功能影响的结果显示:经过6个月治疗,两组患者ALT、AST、GGT、TBIL均较治疗前下降,差异具有统计学意义(P<0.05);对治疗后的两组患者ALT、AST、TBIL、GGT行组间比较,治疗组肝功能指标下降情况较对照组显着(P<0.05)。(3)KXRG对乙肝肝纤维化患者LSM影响的结果显示:对两组治疗前后进行组内比较,对照组在治疗前后的LSM差异无统计学意义(P>0.05),而治疗组的LSM在治疗后较治疗前明显下降,差异具有统计学意义(P<0.05)。(4)KXRG对乙肝肝纤维化患者肠道菌群影响的结果显示:与对照组相比,治疗组OTU数量明显增加(P<0.05);与对照相比,治疗组Chao1指数、Observed species指数、Shannon指数以及Simpson指数显着增高(P<0.05);PCo A及UPGMA样本间层次聚类分析显示两组样本界限明显。菌群结构及丰度分析显示,在门水平上,与对照组相比,治疗组拟杆菌门丰度明显升高,变形菌门、梭杆菌门丰度显着降低,差异具有统计学意义(P<0.05);在科水平上,与对照组比较,治疗组在毛螺菌科、拟杆菌科丰度明显升高,肠杆菌科、梭杆菌科、韦荣氏菌科、链球菌科丰度显着降低,差异具有统计学意义(P<0.05);在属水平上,与对照组相比,治疗组双歧杆菌属、拟杆菌属、毛螺菌属丰度明显升高,埃希菌属、韦荣球菌属、梭杆菌属丰度显着降低(P<0.05)。基于KEGG数据库和COG数据库,对两组差异菌群进行功能预测,发现与肠道感染、细胞凋亡、上皮细胞的细菌入侵、脂多糖的生物合成、初级胆汁酸的生物合成、m TOR信号通路、脂肪酸代谢、紧密连接、胆汁分泌、转录相关因子、VEGF信号通路、抗原的处理与提呈、内质网的蛋白加工、细菌毒素、ECM与受体的相互作用、昼夜节律、p53信号通路等301种生物功能相关。2.实验研究第一节结果显示:(1)与正常组相比,模型组小鼠体重明显下降,肝脏指数上升,ALT、AST表达明显升高(P<0.05);与模型组相比,KXRG组小鼠体重明显上调、肝脏指数下调,肝功能指标ALT、AST表达下调(P<0.05)。(2)KXRG可以改善CCl4导致的小鼠肠道菌群紊乱。模型组与KXRG组在OTU指数、Alpha多样性、Beta多样性存在差异。体现菌群差异的LEf Se分析显示,与模型组相比,KXRG组脱铁杆菌门、GCA_900066575、脱铁杆菌科、Coriobacteriia、Coriobacteriaceae_UCG_002、脱铁杆菌目、红蝽菌目、Atopobiaceae、Mucispirillum、Faecalibaculum的丰度明显降低,芽孢杆菌目、葡萄球菌科、葡萄球菌属、凸腹真杆菌属、普雷沃氏菌属、红游动菌属、Paenalcaligenes、产液阿德勒克罗伊茨菌丰度明显增加。(3)与正常组相比,模型组小鼠结肠组织病理学改变无明显改变,但肠道紧密连接蛋白Claudin-1、Occludin、ZO-1表达水平下调(P<0.05);与模型组相比,KXRG组小鼠肠道Claudin-1、Occludin、ZO-1表达上调(P<0.05)。(4)与正常组相比,模型组小鼠肝脏损害和胶原纤维化沉积明显,血清内毒素LPS、炎症因子IL-1β、IL-6、TNF-α水平明显上调(P<0.05),肝组织TLR4、My D88、NF-κB蛋白和基因表达上调(P<0.05);与模型组相比,KXRG组小鼠肝组织损伤及胶原沉积减轻,LPS、IL-1β、IL-6、TNF-α表达下调(P<0.05),肝组织TLR4、My D88、NF-κB蛋白和基因表达下调(P<0.05)。3.实验研究第二节结果显示:(1)与Control组相比,FMT-model组AST、ALT、HA、LN、PC-Ⅲ、C-Ⅳ表达明显升高(P<0.05);与FMT-model组相比,FMT-control组、FMT-KXRG组小鼠AST、ALT及HA、LN、PC-Ⅲ、C-Ⅳ表达明显下调(P<0.05)。(2)与Control组相比,FMT-model组结肠组织紧密连接蛋白Claudin-1、Occludin、ZO-1表达水平明显下降(P<0.05);与FMT-model组相比,FMT-control组、FMT-KXRG组小鼠结肠组织紧密连接蛋白Claudin-1、Occludin、ZO-1表达水平明显上调(P<0.05)。(3)与Control组相比,FMT-model组小鼠炎症及胶原纤维增生明显,LPS、IL-1β、IL-6、TNF-α表达明显上调(P<0.05),肝组织TLR4、My D88、NF-κB蛋白与基因表达明显上调(P<0.05);与FMT-model组相比,FMT-control组、FMT-KXRG组小鼠肝组织炎症及胶原沉积有所改善,内毒素LPS及细胞因子IL-1β、IL-6、TNF-α表达水平下调(P<0.05),肝组织TLR4、My D88、NF-κB蛋白及基因表达也显着下降(P<0.05)。结论:1.KXRG可以改善乙肝纤维化患者肝功能及肝脏硬度值,同时可以调节患者肠道菌群的结构与丰度。2.KXRG可以通过调节CCl4诱导的肝纤维化小鼠肠道菌群结构,改善肠道黏膜屏障功能,下调肝TLR4/My D88/NF-κB通路,改善肝内炎症及胶原沉积,影响肝纤维化进程。
梁仁久[5](2021)在《壮肝逐瘀煎对肝纤维化大鼠BMP7/SmadS信号通路的影响》文中指出目的:本研究用CCl4法诱导肝纤维化大鼠模型,探究壮肝逐瘀煎对BMP7/Smads信号通路的影响,更深一步的探究壮肝逐瘀煎防治肝纤维化的作用机制。方法:从62只SD雄性大鼠中随机选取54只诱导肝纤维化模型,进行皮下注射40%的CCl4花生油溶液,每周3次,延续8周;将剩余的8只作为对照组(G)。在造模的第6周和第8周分别取3只造模组大鼠进行肝组织HE检测,观察其是否成模。模型构建成功后,把造模的大鼠随机分为壮肝逐瘀煎高剂量组(A)、壮肝逐瘀煎中剂量组(B)、壮肝逐瘀煎低剂量组(C)、复方鳖甲软肝片组(D)、秋水仙碱组(E)和模型组(F)。壮肝逐瘀煎高、中、低剂量组灌胃剂量分别为:200mg/kg、100 mg/kg、50 mg/kg,秋水仙碱灌胃剂量为:0.4 mg/kg,复方鳖甲软肝片灌胃剂量为:50 mg/kg,空白组大鼠灌相对应量的生理盐水作为对照,每天灌胃1次,连续给药6周。灌胃结束后,提前24小时禁食不禁水,记录大鼠体重,麻醉大鼠,通过腹主动脉采血,离心、过滤,将一部分血冻存备用,另一部分用全自动生化分析仪检测谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆红素(TBIL)等肝功能指标。同时记录大鼠肝重。剪取肝脏并分装,一部分放在-80℃冰箱和另一部分用组织固定液固定。将固定的肝组织制作病理切片,进行HE和Masson染色,在显微镜下观察肝组织病理形态。用RT-q PCR法检测肝组织TGFβ-1、BMP7、Smad2、Smad3、Smad7的m RNA表达水平;用Western blotting法检测TGFβ-1、BMP7、Smad2、Smad3、Smad7蛋白的表达水平。结果:1.壮肝逐瘀煎组大鼠的增重水平有高于模型组的趋势,但无统计学意义(P>0.05);空白组的肝脏指数最低,CCL4模型组大鼠的肝脏指数明显高于其他治疗组和空白组,但是没有统计学意义(P>0.05);只有壮肝逐瘀煎低剂量组要高于秋水仙碱组,有统计学意义(P<0.05)。2.与模型组相比,壮肝逐瘀煎组、复方鳖甲软肝片组、秋水仙碱组、空白组大鼠血清中ALT、AST的值均比模型组低,且差异具有统计学意义(P<0.05)。但对比TBIL的值时,壮肝逐瘀煎高剂量组和空白组与模型组的差异具有统计学意义(P<0.05)3.HE和Masson染色显示,模型组大鼠的肝组织中胶原纤维广泛增生,纤维间隔相互连接,部分样本出现假小叶,发展成为肝硬化;壮肝逐瘀煎高、中、低组和复方鳖甲软肝片组以及秋水仙碱组大鼠的肝组织纤维化程度较模型组减轻。4.RT-q PCR显示:模型组大鼠肝脏TGFβ-1、S mad2、Smad3 m RNA表达明显高于对照组(P<0.01);而壮肝逐瘀煎高、中、低组与复方鳖甲软肝片组以及秋水仙碱组TGFβ-1、Smad2、Smad3 m RNA的表达较模型组下降(P<0.01),壮肝逐瘀煎高、中、低组与复方鳖甲软肝片组以及秋水仙碱组BMP7m RNA的表达高于模型组(P<0.01)。5.Western blotting结果显示:大鼠肝组织中T GFβ-1、Smad2、Smad3的表达:模型组表达高于对照组(P<0.05),壮肝逐瘀煎高、中、低组与复方鳖甲软肝片组以及秋水仙碱组的表达相较于模型组明显下降(P<0.01);大鼠肝组织中BMP7的表达:壮肝逐瘀煎高、中、低组与复方鳖甲软肝片组以及秋水仙碱组的表达高于模型组。结论:1.壮肝逐瘀煎能改善肝纤维化大鼠肝功能、减轻肝组织纤维化程度,具有较好的护肝作用。2.壮肝逐瘀煎抗肝纤维化的作用机制可能是通过调控BMP7/Smads信号通路来实现的。
袁轩[6](2021)在《不同旋光性吡喹酮抗肝纤维化作用的研究》文中研究表明日本血吸虫病是一种严重危害社会的人兽共患寄生虫病,它的病理损伤主要是成虫排出的虫卵沉积于肝脏引发慢性炎症,持续的慢性感染导致损伤修复过度,继而诱导虫卵肉芽肿的形成,导致肝脏的纤维化[1]。吡喹酮(Praziquantel,PZQ)因其安全廉价、杀虫高效等优点,被推荐为临床治疗日本血吸虫病的首选药物。患者接受吡喹酮的杀虫治疗后,虫卵的排出得到有效抑制,但是已经形成的虫卵肉芽肿仍然会继续发展,造成肝纤维化。因此,血吸虫病晚期肝纤维化的缓解一直是医学界的一个难题。肝纤维化是细胞外基质(extracellular matrix,ECM)沉积过度与降解不足所直接造成的,是多种慢性肝病发展的共同病理过程。作为肝纤维化过程的中心环节,肝星状细胞(hepatic stellate cells,HSC)是产生ECM的主要来源,HSC的过度增殖和活化更是成为肝纤维化的直接促进因素。研究证实HSC的靶向活化抑制药物可以抑制肝纤维化,因此针对HSC的靶点药物成为目前的研究热点。近年在“旧药新用”的热潮中,吡喹酮被发现可通过上调Smad7的表达抑制TGF-β/Smad信号通路从而影响肝星状细胞的活化,进而发挥直接抗纤维化作用,这给临床治疗肝纤维化提供一种可能的选择。目前市售的吡喹酮是由左旋吡喹酮(Levopraziquantel,L-PZQ)与右旋吡喹酮(Dexpraziquantel,D-PZQ)各约50%组成的消旋吡喹酮(DL-PZQ,简称吡喹酮)。研究表明左旋吡喹酮是杀灭血吸虫的有效成分,其疗效优于消旋吡喹酮,而右旋吡喹酮几乎无作用。鉴于L-PZQ和D-PZQ在杀虫方面表现出的显着药效差异,探讨吡喹酮抗纤维化作用是否同样存在旋光异构体差异可以为高效利用吡喹酮应用于临床肝纤维化的治疗提供实验依据。为探究这一问题,本研究分为以下两部分:一、不同旋光性吡喹酮对CCl4诱导肝纤维化小鼠作用的研究通过连续6 w腹腔注射25%CCl4,建立肝纤维化模型小鼠。建模结束使用肝脏切片Masson染色、肝纤维化指标m RNA水平检测两种方法进行造模效果的评估。成模后每12 h分别灌胃低剂量(l-PZQ,150 mg/kg)和高剂量(h-PZQ,300 mg/kg)的左旋、右旋和消旋吡喹酮,同时使用2.5%聚氧乙烯蓖麻油(EL)进行对照。4 W后称量体重,麻醉处死获取血清、肝脏等标本。通过观察肝脏组织切片Masson染色、检测血清肝纤四项含量和肝纤维化指标m RNA和蛋白表达水平进行药物抗纤维化治疗效果的评估。肝脏组织切片Masson染色结果显示l-D-PZQ、h-D-PZQ和h-DL-PZQ组纤维间隔以及蓝色的胶原纤维明显减少,而L-PZQ高低两个剂量组的纤维间隔和蓝色的胶原纤维变化均不明显;相对于CCl4模型组,l-D-PZQ、h-D-PZQ和h-DL-PZQ组小鼠血清COLⅣ、HA、LN、PCⅢ的含量均有不同程度地降低,并且差异具有统计学意义(P<0.05),而左旋吡喹酮组仅发现h-L-PZQ组COLⅣ和PCⅢ的含量显着降低(P<0.05),HA和LN未发现明显差异(P>0.05),并且l-L-PZQ组四个指标均未发现明显变化(P>0.05);RT-PCR实验结果发现相对于CCl4模型组只有l-D-PZQ、h-D-PZQ和h-DL-PZQ组的小鼠肝脏CollagenⅠ和α-SMA基因的m RNA明显降低(P<0.05),而l-L-PZQ、h-L-PZQ和l-DL-PZQ组的CollagenⅠ和α-SMA基因的m RNA水平变化无统计学差异(P>0.05)。同剂量水平比较,相对于l-L-PZQ,l-D-PZQ可以显着降低小鼠肝脏CollagenⅠ和α-SMA基因的m RNA表达水平(P<0.05),而h-L-PZQ与h-D-PZQ组小鼠肝脏CollagenⅠ和α-SMA基因的m RNA表达水平差异无统计学意义(P>0.05);肝脏羟脯氨酸含量检测结果显示相对于CCl4模型组只有l-D-PZQ、h-L-PZQ、h-D-PZQ和h-DL-PZQ组的小鼠肝脏羟脯氨酸含量明显降低(P<0.05),而l-L-PZQ和l-DL-PZQ组的羟脯氨酸含量水平差异无统计学意义(P>0.05)。本部分通过CCl4诱导肝纤维化小鼠探索不同旋光性吡喹酮抗肝纤维化的作用。结果发现相对于CCl4模型组,右旋吡喹酮和消旋吡喹酮可以改善小鼠肝脏胶原纤维的沉积并且显着降低小鼠血清肝纤维化四项因子指标COLⅣ、HA、LN、PCⅢ的含量、肝脏纤维化标志物的CollagenⅠ和α-SMA基因的m RNA水平以及肝脏胶原纤维羟脯氨酸的含量,而左旋吡喹酮只有在高剂量时候才有一定的抗纤维化的作用,并且相对于左旋吡喹酮,同剂量的右旋吡喹酮的抗纤维化作用更强。综上所述,针对CCl4诱导的肝纤维化小鼠治疗作用的比较,右旋吡喹酮的效果强于左旋吡喹酮。二、不同旋光性吡喹酮体外对肝星状细胞影响的研究将对数生长期的人肝星状细胞(LX-2)用培养板预培养,同时设立无细胞空白对照组。饥饿处理12 h,用TGF-β(2.5 ng/m L)刺激,24 h后向每孔添加左旋、右旋以及消旋吡喹酮并在培养箱中继续孵育。CCK-8法检测细胞增殖能力,划痕实验检测迁移能力,RT-PCR检测活化指标基因的m RNA的表达水平,细胞免疫荧光和Western Blot检测活化指标蛋白的表达水平。结果显示L-PZQ、D-PZQ和DL-PZQ药物浓度低于30μg/m L时,活化LX-2细胞的增殖能力均未发现受到明显影响。药物浓度高于30μg/m L时,L-PZQ、D-PZQ和DL-PZQ开始对活化LX-2细胞的增殖能力产生抑制作用,且呈现剂量依赖效应。药物浓度低于30μg/m L时,三组间差异没有统计学意义(P>0.05),药物浓度高于40μg/m L时,D-PZQ的抑制作用明显大于L-PZQ和DL-PZQ,差异具有统计学意义(P<0.05),而L-PZQ和DL-PZQ组间差异无统计学意义(P>0.05);与空白对照组相比,低剂量L-PZQ(15μg/m L)可以促进LX-2的迁移,差异具有统计学意义(P<0.05),而同剂量的D-PZQ和DL-PZQ未发现明显作用(P>0.05)。高剂量的D-PZQ和DL-PZQ(30μg/m L)可以显着抑制活化LX-2的迁移能力(P<0.05),而同剂量的L-PZQ未发现明显作用(P>0.05);肝纤维化活化指标m RNA水平,除L-PZQ对CollagenⅠ基因的m RNA表达水平未发现有明显抑制作用外(P>0.05),L-PZQ、D-PZQ和D-PZQ对LX-2活化指标基因的m RNA均有明显的抑制作用(P<0.05),且D-PZQ的抑制作用均明显强于L-PZQ,差异具有统计学意义(P<0.05);肝纤维化活化指标蛋白水平,细胞免疫荧光结果显示D-PZQ可以降低CollagenⅠ和α-SMA的免疫荧光强度,而L-PZQ的作用不明显。Western Blot结果显示D-PZQ与DL-PZQ可以显着降低CollagenⅠ、CollagenⅢ和α-SMA蛋白表达水平(P<0.05),而未发现L-PZQ的明显抑制作用(P>0.05),并且D-PZQ组较L-PZQ组三个指标蛋白均显着降低(P<0.05)。本部分的体外细胞实验发现右旋吡喹酮可以显着抑制LX-2细胞的增殖、活化以及迁移,具有显着的抗肝纤维化作用,而左旋吡喹酮只有部分抑制作用。相对于左旋吡喹酮,右旋吡喹酮抑制LX-2细胞的增殖、活化以及迁移的能力更强。这些体外实验结果提示吡喹酮的抗肝纤维化作用效果可能是其中含有的右旋体所致。
艾丁丁,罗伟生[7](2021)在《基因转染技术在抗肝纤维化中应用的研究进展》文中提出基因治疗是指将外源性正常基因导入靶细胞以治疗疾病的一种方法,现阶段主要运用于肿瘤及某些特殊疾病的治疗。有研究显示,将基因治疗的转染技术用于抗肝纤维化的治疗可以逆转纤维化,或可成为治疗肝纤维化的潜在方案。本文就基因转染技术在抗肝纤维化中应用的研究进展进行综述。
杨晶晶[8](2021)在《DNMT3A介导LncRNA ANRIL甲基化促进肝纤维化的分子机制》文中进行了进一步梳理研究背景肝纤维化(Liver fibrosis)是各种损伤因素引发的持续性损伤修复反应,导致肝组织内细胞外基质(Extracellular matrix,ECM)的异常沉积,进一步引发肝脏结构和肝功能异常改变的一种病理过程。目前临床上肝纤维化的治疗效果不佳,严重危害人类的生命健康。因此,阐明肝纤维化的发病机制,具有重要临床意义。研究证实,活化的肝星状细胞(Hepatic stellate cells,HSCs)是肝脏合成ECM的主要细胞,肝星状细胞活化增殖是肝纤维化形成的中心环节。在各种损伤刺激下,HSCs由静止的、储存维生素A的细胞向增生的、成纤维的肌成纤维细胞的转分化,并分泌α-平滑肌肌动蛋白(Alpha-smooth muscle actin,α-SMA)、I型胶原(Collagen I,Col1a1)等,产生促纤维化的细胞因子如转化生长因子(Transforming growth factor-β1,TGF-β1)、血小板源性生长因子(Platelet derived growth factor-BB,PDGF-BB)等现已被公认为肝纤维化的主要驱动因素。然而,到目前为止,关于调控HSCs增殖和肝纤维化发病的分子机制不详,因此,探究肝纤维化发病过程中HSCs增殖的分子作用机制对预防和治疗肝纤维化意义重大。各种因素参与调控HSCs增殖,表观遗传修饰DNA甲基化是重要的表观遗传标记,在肝纤维化形成过程中起关键作用。本课题组研究发现DNA甲基化参与调控HSCs增殖,但是作为DNA甲基化转移酶之一的DNMT3A在肝纤维化的发病过程中起着怎样的调控作用,仍不明确。此外,研究表明,表观遗传学修饰长链非编码RNA(Long non-coding RNA,Lnc RNA)具有调控HSCs增殖的作用,INK4基因座中反义非编码RNA(Antisense Non-Coding RNA in the INK4 Locus,ANRIL)是已知的具有调控细胞活化增殖功能的关键分子之一。文献报道Lnc RNA ANRIL可通过介导细胞增殖通路相关蛋白的表达调控细胞增殖活性。但是,关于Lnc RNA ANRIL如何调控HSCs增殖的具体分子机制不清,有待阐明。基于DNMT3A与Lnc RNA ANRIL两种表观遗传修饰方式如何调控HSCs增殖,两者之间相互作用、作用靶点和调控方式,需要深入阐明。本文将探究DNMT3A介导Lnc RNAANRIL甲基化在肝纤维化中的分子机制,以期为临床肝纤维化的治疗提供科学依据、新的分子诊断指标和干预靶点。本研究收集临床肝纤维化患者血清及组织标本,并采用经典的四氯化碳(CCl4)皮下注射建立小鼠肝纤维化模型为体内研究对象,以肝星状细胞HSCs为体外研究对象,应用荧光原位杂交、甲基化特异性PCR(MSP)、5-溴脱氧尿嘧啶核苷(Brd U)荧光染色等技术,进行DNMT3A介导Lnc RNA ANRIL甲基化在肝纤维化中的分子机制研究。全文共分三个部分:第一部分临床肝纤维化患者样本中DNMT3A、ANRIL、α-SMA、Collagen I的差异表达目的:阐明DNMT3A、ANRIL、α-SMA、Collagen I在临床患者肝纤维化样本中的差异表达。方法:选取安徽医科大学第二附属医院肝胆外科慢性肝病患者20例。所有患者均签署剩余标本使用知情同意书。分组:根据肝穿刺活检病理学诊断有无合并纤维化症状分为对照组(无纤维化组)和纤维化组各10例,肝穿刺活检病理学诊断参照《肝纤维化诊断及治疗共识(2019)》。并记录患者的相关信息,如年龄、性别等,严格按照安徽医科大学生物医学伦理委员会要求执行,收集血清及肝组织样本待测。(1)检测肝纤维化患者血清中AST、ALT、HA的含量变化;(2)HE染色观察肝纤维化患者肝脏组织病理学改变;(3)Masson染色及天狼猩红染色观察肝纤维化患者肝脏组织胶原沉积改变;(4)Western blotting及免疫组织化学实验检测DNMT3A、肝纤维化标志蛋白α-SMA、Collagen I在肝纤维化患者肝脏组织中的差异表达;(5)RT-qPCR检测DNMT3A、ANRIL、α-SMA、Collagen I m RNA在肝纤维化患者肝脏组织中的差异表达。结果:1.临床患者肝纤维化组织中DNMT3A表达显着升高,ANRIL表达明显降低(1)肝纤维化组血清中AST/ALT比值、HA的含量与对照组相比明显增加;(2)与对照组相比,肝纤维化组肝组织中胶原沉积明显增多、炎性浸润增加,纤维化改变显着;(3)肝纤维化组肝组织中DNMT3A、α-SMA、Collagen I蛋白的表达较对照组显着增高;(4)肝纤维化组肝组织中DNMT3A、α-SMA、Collagen I m RNA的表达较对照组显着增高,而ANRIL m RNA的表达则显着降低。(5)相关性Preason分析结果显示:肝纤维化患者组织中DNMT3A和α-SMA的相对表达呈现明显正相关,ANRIL和α-SMA的相对表达呈现明显负相关。小结:DNMT3A高表达与ANRIL低表达以及肝脏功能受损,可能与肝纤维化患者纤维化形成有关。第二部分小鼠肝纤维化组织和肝星状细胞中DNMT3A、ANRIL、α-SMA、Collagen I的表达及ANRIL启动子区域甲基化水平目的进一步阐明小鼠肝纤维化组织和肝星状细胞中DNMT3A、ANRIL、α-SMA、Collagen I的表达及ANRIL启动子区域甲基化水平。方法1.30只雄性小鼠(18~22g)随机分为2组:正常组15只、CCl4处理组15只。自处理之日开始,除正常组给予橄榄油(1 ml/kg)皮下注射外,其他各组小鼠皮下注射50%CCl4橄榄油溶液(1 ml/kg)每周2次,共12周;直至第12周结束,建模过程中注意观察并记录小鼠体重变化,于造模满12周时,麻醉后留取肝脏组织和血液标本,检测相关指标。(1)检测肝纤维化小鼠血清中AST、ALT、HA、TGF-β1的含量变化;(2)HE染色观察小鼠肝纤维化组织病理学改变;(3)Masson染色及天狼猩红染色观察小鼠肝纤维化组织胶原沉积改变;(4)Western blotting及免疫组织化学实验检测DNMT3A、α-SMA、Collagen I蛋白在小鼠肝纤维化组织中的表达;(5)RT-qPCR检测DNMT3A、ANRIL、α-SMA、Collagen I m RNA在小鼠肝纤维化组织中的表达;(6)FISH检测ANRIL在小鼠肝纤维化组织中的表达;(7)MSP检测小鼠肝纤维化组织中ANRIL启动子区域甲基化水平。2.体外以肝星状细胞HSCs为研究对象,使用细胞因子TGF-β1(5ng/ml)诱导刺激HSCs增殖,建立体外HSCs增殖模型,进行以下实验:(1)检测TGF-β1处理HSCs后上清液中HA和PIIIP的含量变化;(2)Western blotting及免疫荧光实验检测DNMT3A、α-SMA、Collagen I蛋白在TGF-β1处理HSCs中的差异表达;(3)RT-qPCR检测DNMT3A、ANRIL、α-SMA、Collagen I m RNA在TGF-β1处理HSCs中的差异表达;(4)应用MTT、CCK8以及Brd U荧光染色检测观察TGF-β1处理对HSCs增殖的影响;(5)BSP检测TGF-β1处理HSCs后ANRIL启动子区域甲基化位点变化。结果:1.小鼠肝纤维化组织中DNMT3A表达显着增高,ANRIL表达显着降低,ANRIL表达降低可能与ANRIL基因启动子区域甲基化水平升高有关。(1)肝纤维化小鼠血清中AST/ALT比值、HA、TGF-β1含量水平较对照组明显增高;(2)与对照组相比,小鼠肝纤维化组织中胶原沉积增多、炎性浸润增加、纤维化改变明显;(3)与对照组相比,DNMT3A、α-SMA、Collagen I蛋白和m RNA的表达在小鼠肝纤维化组织中显着增高,而ANRIL m RNA在小鼠肝纤维化组织中的表达显着降低;(4)小鼠肝纤维化组织中ANRIL启动子区域甲基化水平与对照组相比显着升高。2.体外HSCs增殖模型中,DNMT3A高表达,ANRIL低表达,ANRIL的低表达可能与ANRIL启动子区域甲基化水平升高有关(1)TGF-β1处理后HSCs细胞上清液中HA和PIIIP的含量较对照组明显增高;(2)与对照组相比,TGF-β1诱导刺激HSCs(24h、48h)后HSCs增殖活性明显增强;(3)与对照组相比,DNMT3A、α-SMA、Collagen I蛋白和m RNA的表达在TGF-β1诱导刺激HSCs中显着增高,而ANRIL m RNA的表达显着降低;(4)同时,TGF-β1诱导刺激HSCs中ANRIL启动子区域甲基化水平较对照组显着升高。小结:DNMT3A高表达与ANRIL高甲基化修饰导致的ANRIL表达下调,可能与小鼠肝纤维化形成和HSCs增殖有关。但是关于DNMT3A与ANRIL如何调控肝纤维化形成和HSCs增殖,两者之间有何调控作用,仍不清楚,值得进一步研究。第三部分DNMT3A介导ANRIL甲基化在肝纤维化与HSCs增殖中的分子作用机制目的:探究DNMT3A介导ANRIL甲基化调控HSCs细胞增殖及肝纤维化的分子机制。方法:1.60只雄性小鼠(18~22g)随机分为4组:正常组,CCl4处理组,CCl4+LV3慢病毒空载体组,CCl4+LV3-DNMT3A慢病毒组,每组各15只。自处理之日开始,除正常组给予(1 ml/kg)剂量橄榄油皮下注射外,其他各组小鼠皮下注射50%CCl4橄榄油溶液(1 ml/kg)每周2次,共12周;于造模满11周后,LV3慢病毒空载体组小鼠,LV3-DNMT3A慢病毒组小鼠,分别给予30μl慢病毒空载体LV3和30μl慢病毒LV3-DNMT3A尾静脉注射处理(慢病毒颗粒的滴度为1×109TU/ml),一周后处死小鼠,留取肝脏组织和血液标本,检测相关指标。(1)HE染色观察重组慢病毒DNMT3A干预后小鼠肝纤维化组织病理学改变;(2)Masson染色及天狼猩红染色观察重组慢病毒DNMT3A干预后小鼠肝纤维化组织胶原沉积改变;(3)Western blotting及免疫组织化学实验检测重组慢病毒DNMT3A干预后,DNMT3A、α-SMA、Collagen I蛋白在小鼠肝纤维化组织中的表达变化;(4)RT-qPCR检测重组慢病毒DNMT3A干预后,DNMT3A、ANRIL、α-SMA、Collagen I m RNA在小鼠肝纤维化组织中的表达变化;(5)FISH检测重组慢病毒DNMT3A干预后,ANRIL在小鼠肝纤维化组织中的表达变化。2.细胞实验:应用DNMT3A过表达质粒、DNMT3A小干扰RNA以及DNA甲基转移酶抑制剂2’-脱氧-5-氮杂胞嘧啶(5-aza-2’-deoxycytidine,5-Azad C)1μmol/L分别转染处理TGF-β1(5ng/ml)刺激24h后的HSCs,实验分组:对照组,TGF-β1(5ng/ml)处理组,TGF-β1(5ng/ml)+DNMT3A过表达质粒处理组,TGF-β1(5ng/ml)+DNMT3A小干扰RNA处理组,TGF-β1(5ng/ml)+5-Azad C(1μmol/L)处理组,并进行以下实验:(1)Western blotting检测DNMT3A、α-SMA、Collagen I蛋白在DNMT3A过表达质粒、DNMT3A小干扰RNA以及5-Azad C(1μmol/L)干预处理后HSCs中的表达变化;(2)RT-qPCR检测DNMT3A、ANRIL、α-SMA、Collagen I m RNA在DNMT3A过表达质粒、DNMT3A小干扰RNA以及5-Azad C(1μmol/L)干预处理后HSCs中的表达变化;(3)应用MTT、CCK8以及Brd U荧光染色检测观察DNMT3A过表达质粒、DNMT3A小干扰RNA以及5-Azad C(1μmol/L)处理后对HSCs增殖的影响。3.应用ANRIL过表达质粒、ANRIL小干扰RNA转染处理TGF-β1(5ng/ml)刺激24h后的HSCs,实验分组:对照组,TGF-β1(5ng/ml)处理组,TGF-β1(5ng/ml)+ANRIL过表达质粒处理组、TGF-β1(5ng/ml)+ANRIL小干扰RNA处理组;并进行以下实验:(1)Western blotting检测ANRIL过表达质粒、ANRIL小干扰RNA分别处理活化增殖的HSCs中α-SMA、Collagen I、AMPK、Phospho-AMPK(p-AMPK)蛋白的表达变化;(2)RT-qPCR检测ANRIL过表达质粒、ANRIL小干扰RNA分别处理活化增殖的HSCs中ANRIL、α-SMA、Collagen I m RNA的表达变化;(3)应用MTT、CCK8以及Brd U荧光染色观察ANRIL过表达质粒、ANRIL小干扰RNA对HSCs增殖的影响。结果:1.重组慢病毒DNMT3A干预后,ANRIL的表达明显升高,小鼠肝纤维化程度明显改善(1)与对照组相比,小鼠肝纤维化组织中胶原沉积增多、炎性浸润增加、纤维化改变明显,给予重组慢病毒DNMT3A干预后,与慢病毒空载体组相比,肝脏细胞结构改善、胶原纤维减少,肝组织纤维化病理改善更为明显;(2)与对照组相比,小鼠肝纤维化组织中DNMT3A、α-SMA、Collagen I蛋白和m RNA的表达显着增高,给予重组慢病毒DNMT3A干预后,与慢病毒空载体组相比,小鼠肝纤维化组织中DNMT3A、α-SMA、Collagen I蛋白和m RNA的表达明显减少;(3)然而,与对照组相比,ANRIL m RNA在小鼠肝纤维化组织中的表达显着降低,给予重组慢病毒DNMT3A干预后,与慢病毒空载体组相比,小鼠肝纤维化组织中ANRIL m RNA的表达明显升高。2.体外HSCs增殖模型中,过表达DNMT3A可显着抑制ANRIL表达,促进HSCs增殖;而沉默DNMT3A可明显促进ANRIL表达,抑制HSCs增殖;提示DNMT3A通过负调控ANRIL的表达影响HSCs增殖活性(1)与阴性对照组相比,转染DNMT3A小干扰RNA处理后HSCs中DNMT3A m RNA表达显着降低,而ANRIL m RNA表达显着增高。(2)然而,与空质粒组相比,转染DNMT3A过表达质粒后HSCs中DNMT3A m RNA表达明显增高,而ANRIL m RNA表达明显降低。(3)与TGF-β1刺激组相比,使用DNA甲基化抑制剂5-Azad C处理HSCs后ANRIL表达水平明显升高。(4)与空质粒组相比,转染DNMT3A过表达质粒后HSCs增殖活性明显增强;(5)与阴性对照组相比,转染DNMT3A小干扰RNA后可明显抑制HSCs增殖;此外,与TGF-β1刺激组相比,5-Azad C处理后可明显抑制HSCs增殖。3.过表达ANRIL能明显抑制AMPK蛋白磷酸化水平,同时可显着降低HSCs的增殖活性;沉默ANRIL可显着增加AMPK蛋白磷酸化水平,同时可显着促进HSCs的增殖活性;(1)与空质粒组相比,ANRIL过表达质粒转染HSCs后ANRIL表达显着升高,而α-SMA、Collagen I、p-AMPK表达明显降低;(2)另外,与空质粒组相比,ANRIL过表达质粒转染后明显抑制HSCs增殖。(3)然而,与阴性对照组相比,ANRIL小干扰RNA转染HSCs后ANRIL表达显着降低,而α-SMA、Collagen I、p-AMPK表达明显增高;(4)与阴性对照组相比,ANRIL小干扰RNA转染后明显促进HSCs增殖。小结:Lnc RNAANRIL可能因DNMT3A介导的高水平甲基化修饰而表达下调,使得ANRIL对AMPK信号通路核心蛋白AMPK的抑制作用减弱,AMPK蛋白磷酸化水平升高,激活AMPK信号通路,HSCs增殖活性增强,促进肝纤维化的形成。结论:1.DNMT3A高表达与Lnc RNA ANRIL低表达以及肝脏功能受损,可能与肝纤维化形成有关。2.DNMT3A高表达与Lnc RNA ANRL发生高甲基化修饰导致ANRIL表达下调,可能与肝纤维化形成和HSCs增殖有关。3.LncRNA ANRIL可能因DNMT3A介导的高甲基化修饰而表达下调,使得ANRIL对AMPK信号通路核心蛋白AMPK的抑制作用减弱,AMPK蛋白磷酸化水平升高,激活AMPK信号通路,HSCs增殖活性增强,促进肝纤维化的形成。
陈鑫[9](2021)在《重组腺相关病毒载体介导的环状RNA circFBXW4在肝纤维化中的功能及机制研究》文中认为肝纤维化(hepatic fibrosis,HF)是由各种感染、免疫反应、理化因素等长时间的刺激下,肝脏中各类细胞外基质(extracellular matrix,ECM)代谢失衡,造成纤维结缔组织异常增生和肝脏结构紊乱。临床上肝纤维化的早期症状并不典型,目前尚缺乏灵敏的早期诊断指标。研究发现,肝星状细胞(hepatic stellate cell,HSC)激活并分化为肌成纤维细胞,是细胞外基质分泌的主要细胞来源。因此,肝星状细胞的活化被认为是肝纤维化启动和持续阶段的中心环节。肝星状细胞的活化过程受各种非编码RNA(noncoding RNA,nc RNA)的联合调控,深入研究肝纤维化发生的分子机制将为研发新型治疗手段提供一定的研究基础。非编码RNA在肝纤维化发生、发展的过程中具有重要的调控作用。其中,微小RNA(micro RNA,miRNA)和长链非编码RNA(long noncoding RNA,lnc RNA)在肝纤维化相关的机制探究和临床意义已有大量的研究报道。近年来,环状RNA(circular RNA,circRNA)作为一类新兴的非编码RNA分子被发现,其与各类疾病的生理过程密切相关。内源性circRNAs是通过反向剪切以共价键形成的环状RNA分子,其稳定性高可耐受核酸酶的降解,在不同的物种间具有保守性,在组织和细胞不同的发育阶段和生理状态呈现特异性表达。circRNAs的分子结构特性使其作为新型的临床诊断标记物在开发上具有明显的优势,现已发展成生物医学的热点研究领域之一。circRNAs在各类疾病中的功能及作用机制逐渐引起研究者们的广泛关注,然而,有关circRNAs在肝纤维化中的表达谱分析和具体机制尚有待阐明。在本研究中,构建了小鼠肝纤维化进展和逆转模型,采用肝脏原位灌流技术,分离提取小鼠肝脏的原代肝星状细胞。运用高通量测序技术,分析肝纤维化小鼠原代肝星状细胞中的circRNAs表达谱,鉴定发现大量的circRNAs分子存在差异性表达。其中,circFBXW4的表达水平在肝纤维化进展期显着降低,并随肝纤维化的逆转过程表达恢复,提示circFBXW4可能与肝纤维化发生、发展的病理过程密切相关,引起了我们的重点关注并对其展开了功能学探究。研究中采用重组腺相关病毒为载体,介导circFBXW4靶向肝脏的基因治疗,实验发现提高circFBXW4的水平可抑制肝纤维化过程中的肝损伤,减少肝组织中的纤维增生和胶原沉积,一定程度上修复了肝脏结构紊乱的现象。同时,运用慢病毒生物载体构建了circFBXW4过表达的稳转肝星状细胞株,发现过表达circFBXW4抑制肝星状细胞由静息态向激活态的转化,阻滞其细胞周期,减少活化态肝星状细胞的恶性增殖。此外,利用非病毒载体系统中的阳离子脂质体介导法,发现干扰circFBXW4的生物信号对肝星状细胞具有反向调控功能。以上结果提示,circFBXW4可能是一种抗肝纤维化的RNA分子。在机制探究方面,大部分外显子来源且定位在细胞质中的circRNAs,常通过竞争性内源RNA(competitive endogenous RNA,ce RNA)参与调控目的基因的表达,进而影响生物学功能。因此,本研究进一步运用micro RNAs芯片技术,分析原代肝星状细胞中micro RNAs的差异表达,并通过生物信息学预测circFBXW4可能结合的micro RNAs分子,经验证发现circFBXW4可靶向结合miR-18b-3p,并调控其表达水平。micro RNAs芯片分析及实验检测均发现,miR-18b-3p在肝纤维化的过程中表达上调,其具有促进肝星状细胞中纤维介质表达的功能,并且circFBXW4与miR-18b-3p的表达呈负相关关系。抑癌基因F框/WD-40域蛋白7(F box and WD 40 domain containing protein 7,FBXW7)是miR-18b-3p的靶基因之一,本研究发现circFBXW4通过靶向结合miR-18b-3p进而调控FBXW7信号通路。此课题在动物、组织、细胞、分子等多个维度,进行了关于circFBXW4表型及机制的初步探究。发现circFBXW4是调节肝星状细胞活化和肝纤维化发展的关键生物分子,其可能作为一种预测肝纤维化进展和逆转病理过程的潜在生物标志物。
程龙浩[10](2021)在《肝纤维化小鼠模型的建立及血清生物标志物群的筛选研究》文中认为背景和目的:肝纤维化是多种慢性肝病进展期的共同病理表现,是诊断和治疗慢性肝病的关键环节。现阶段,临床诊断肝纤维化主要依赖于病理学、影像学和实验室检查,但仍需更准确有效的诊断方法;由于肝纤维化的发病机制复杂,目前尚无疗效明确的药物可供使用,因此在临床研究前期,需要建立能模拟不同病因导致肝纤维化的小鼠模型,作为解决肝纤维化防治问题的基础研究手段。代谢组学是系统生物学的组成部分,是探索疾病发病机制的重要研究工具,生物标志物是代谢组学的研究意义,考虑到目前临床上缺乏有效的诊断性生物标志物和药物治疗手段,通过代谢组学筛选肝纤维化模型的血清生物标志物,不仅能为临床疾病代谢组学提供前期理论基础,也对肝纤维化代谢途径的研究具有重要生物学意义。本课题旨在通过代谢组学技术分析不同种肝纤维化小鼠模型的血清代谢物,寻找与肝纤维化发生发展相关的共同代谢标志物和代谢机制。方法:分别建立四氯化碳化学毒性诱导的急、慢性肝纤维化模型,高脂高糖饮食诱导的早、晚期肝纤维化模型和胆管结扎胆汁淤积性肝纤维化模型,并通过血清生化指标、肝脏病理分析及纤维化标志物等验证肝纤维化模型的成功性。运用UPLCHDMS技术对以上小鼠模型的血清样本进行检测,采用多元统计分析方法筛选差异性化合物,再与代谢组学数据库匹配,鉴定得到各组模型特定的内源性代谢物,通过通路分析研究与肝纤维化相关的代谢通路变化。最后将五种肝纤维化模型的差异性代谢物信息和代谢通路进行整合,筛选共同的肝纤维化生物标志物。结果:五种肝纤维化模型中Model组小鼠的血清生化指标AST和ALT水平均较Control组有不同升高,但在高脂高糖饮食诱导的早期肝纤维化模型中升高不明显,肝组织切片H&E染色发现五种模型中Model组均发生炎症反应和肝损伤;肝纤维化评价方面,Masson染色和天狼星红染色表明,五种模型中Model组均有不同程度的胶原纤维沉积,肝纤维化轻重不同,编码肝纤维化基因Acta2和Col1a1的m RNA表达水平进一步验证肝纤维化病理结果,Model组Acta2和Col1a1的基因表达升高。以上结果说明五种不同类型的肝纤维化小鼠模型构建成功。随后就上述小鼠模型的血清样本进行基于代谢组学的生物标志物群研究。多元统计分析共筛选得到四氯化碳急性模型的81个差异性代谢物,四氯化碳慢性模型的63个差异性代谢物,高脂高糖早期模型的88个差异性代谢物,高脂高糖晚期模型的107个差异性代谢物和胆汁淤积性模型的147个差异性代谢物,代谢通路分析得到与肝纤维化发生相关的通路有苯丙氨酸代谢、色氨酸代谢、花生四烯酸代谢、甘油磷脂代谢、视黄醇代谢和生物素代谢,五种肝纤维化模型差异性代谢物整合分析得到与肝纤维化发生发展相关的共同代谢标志物有Lyso PC(14:0)、Lyso PC(15:0)、Lyso PC(16:0)、Lyso PC(17:0)、Lyso PC(18:0)、Lyso PE(22:0/0:0)、12(S)-HEPE和4,7,10,13-Eicosatetraenoic acid。结论:成功复制了多种不同类型的肝纤维化小鼠模型,并就其血清样本进行代谢组学的生物标志物群研究。肝纤维化发生涉及的代谢通路变化有苯丙氨酸代谢、色氨酸代谢、花生四烯酸代谢、甘油磷脂代谢、视黄醇代谢和生物素代谢。Lyso PC(14:0)、Lyso PC(15:0)、Lyso PC(16:0)、Lyso PC(17:0)、Lyso PC(18:0)、Lyso PE(22:0/0:0)、12(S)-HEPE和4,7,10,13-Eicosatetraenoic acid这8个代谢物可作为肝纤维化的血清生物标志物。
二、肝纤维化的基因治疗(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、肝纤维化的基因治疗(论文提纲范文)
(1)芝麻活性成分调控FXR/SHP/LXR信号改善肝纤维化进程的机制研究(论文提纲范文)
摘要 |
Abstract |
表1 缩略词 |
第一章 绪论 |
1.1 肝纤维化的研究现状 |
1.1.1 化学合成药物抗肝纤维化研究进展 |
1.1.2 中药抗肝纤维化研究进展 |
1.2 肝纤维化的诱发因素 |
1.3 肝纤维化的发展机理 |
1.4 调控肝纤维化的信号靶点 |
1.4.1 TGF-β/smads调控肝纤维化 |
1.4.2 PI3K/Akt/mTOR调控肝纤维化 |
1.4.3 TLR4/My D88/NF-kB调控肝纤维化 |
1.4.4 FXR/SHP/LXR调控肝纤维化 |
1.5 本研究的目的 |
第二章 芝麻素通过介导 FXR/SHP 信号交互调控炎症减轻肝纤维化 |
2.1 前言 |
2.2 实验材料及方法 |
2.2.1 实验仪器 |
2.2.2 实验试剂 |
2.3 实验方法 |
2.3.1 动物饲养 |
2.3.2 血清AST/ALT的测定 |
2.3.3 制备肝脏切片 |
2.3.4 H&E染色 |
2.3.5 Masson染色 |
2.3.6 Sirius Red染色 |
2.3.7 IHC染色 |
2.3.8 组织免疫荧光 |
2.3.9 实验细胞的培养 |
2.3.10 细胞生存率检测 |
2.3.11 细胞荧光染色检测 |
2.3.12 细胞基因沉默实验 |
2.3.13 蛋白印迹实验 |
2.3.14 qRT-PCR检测 |
2.3.15 统计学处理 |
2.4 实验结果 |
2.4.1 SES改善血清生化指标升高及组织病理学变化 |
2.4.2 SES改善小鼠肝脏胶原沉积 |
2.4.3 SES增强FXR/SHP信号干预肝纤维化 |
2.4.4 SES抑制肝纤维化中炎症细胞因子的产生 |
2.4.5 SES抑制TGF-β诱导的HSCs中纤维化标志蛋白的表达 |
2.4.6 SES抑制HSCs中炎症细胞因子的产生 |
2.4.7 SES调控FXR介导的SHP信号抑制HSCs的激活 |
2.4.8 SES通过siFXR介导SHP减少HSCs的活化 |
2.4.9 SES通过调控si SHP介导FXR减少HSCs的活化 |
2.5 讨论 |
第三章 芝麻酚靶向FXR/LXR信号交互参与巨噬细胞和肝星状细胞串扰改善肝纤维化 |
3.1 前言 |
3.2 实验仪器与试剂 |
3.2.1 实验仪器 |
3.2.2 实验试剂 |
3.3 实验方法 |
3.3.1 实验动物模型建立 |
3.3.2 血清AST/ALT测定 |
3.3.3 制备石蜡切片 |
3.3.4 HE染色 |
3.3.5 Masson染色 |
3.3.6 Sirius Red染色 |
3.3.7 组织免疫荧光染色 |
3.3.8 实验细胞培养 |
3.3.9 细胞生存率检测 |
3.3.10 细胞荧光染色检测 |
3.3.11 细胞基因沉默实验 |
3.3.12 蛋白印迹实验 |
3.3.13 qRT-PCR检测 |
3.3.14 RT-PCR检测 |
3.3.15 统计学处理 |
3.4 实验结果 |
3.4.1 DER改善血清生化指标及组织病理学的改变 |
3.4.2 DER改善肝纤维化中胶原累积 |
3.4.3 DER抑制TAA诱导的小鼠肝脏炎症 |
3.4.4 DER参与FXR/LXR信号介导的自噬改善肝纤维化 |
3.4.5 DER改善TAA或 RA诱导的血清生化指标及病理学的改变 |
3.4.6 DER抑制肝脏自噬 |
3.4.7 DER抑制TAA诱导的炎症细胞因子的产生 |
3.4.8 DER抑制活化HSCs中纤维化标志蛋白的表达 |
3.4.9 DER减少活化HSCs中炎症细胞因子的产生 |
3.4.10 DER调控FXR/LXR和自噬信号逆转HSCs的激活 |
3.4.11 DER作用同3-MA抑制HSCs的自噬及炎症因子的表达 |
3.4.12 DER抑制巨噬细胞的上清液激活的肝星状细胞自噬 |
3.4.13 DER抑制巨噬细胞的上清液激活的肝星状细胞炎症的表达 |
3.4.14 DER通过siATG7 抑制自噬减少肝星状细胞的激活 |
3.4.15 DER调节FXR/LXRα及炎症因子在基因水平上的表达 |
3.4.16 DER激活FXR抑制肝星状细胞的激活和自噬 |
3.4.17 DER激活LXRs抑制肝星状细胞的激活和自噬 |
3.4.18 FXR/LXR参与巨噬细胞和肝星状细胞间的串扰 |
3.4.19 DER靶向FXR/LXR交互参与细胞串扰抑制肝星状细胞激活 |
3.5 讨论 |
第四章 结论 |
参考文献 |
致谢 |
附录1 发表论文 |
附录2 研究生期间获奖情况 |
(2)CCL4诱导小鼠肝纤维化模型基因芯片整合分析及核心基因的筛选验证研究(论文提纲范文)
中文摘要 |
abstract |
缩略词表 |
第1章 绪论 |
第2章 综述 肝纤维化基因诊断及治疗技术的研究进展 |
2.1 肝纤维化的基因诊断 |
2.1.1 传统肝纤维化诊断方法 |
2.1.2 MiRNA与肝纤维化进展的关系 |
2.2 肝纤维化的基因治疗策略 |
2.2.1 反义寡核苷酸(Antisense oligodeoxynucleotides,ODNs)治疗策略 |
2.2.2 基于siRNA(Small interfering RNA)的治疗 |
2.2.3 基于miRNA的治疗 |
2.2.4 LncRNA在肝硬化基因治疗中扮演的角色 |
2.2.5 诱饵ODN疗法 |
2.2.6 三股螺旋结构寡核苷酸 (triplehehx forming oligonucleotide,TFO) 策略 |
2.3 总结 |
第3章 材料和方法 |
3.1 基因芯片分析方法和步骤 |
3.1.1 筛选差异表达基因 |
3.1.2 GO分析和KEGG通路富集分析 |
3.1.3 蛋白质-蛋白质互作网络分析和筛选核心基因 |
3.2 主要实验器材与试剂 |
3.2.1 实验器材 |
3.2.2 实验试剂 |
3.2.3 实验动物及给药方案 |
3.3 实验方法 |
3.3.1 RNA提取 |
3.3.2 PCR验证 |
第4章 结果 |
4.1 肝硬化差异表达基因筛选 |
4.2 肝硬化差异表达基因GO分析 |
4.3 肝硬化差异表达基因信号通路分析 |
4.4 核心基因和信号通路的蛋白蛋白互作分析(PPI)和模块分析 |
4.5 核心基因表达水平变化 |
第5章 讨论 |
第6章 结论 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(3)柴芪益肝方治疗肝纤维化的临床和实验研究(论文提纲范文)
摘要 |
ABSTRACT |
符号说明 |
第一章 中西医治疗肝纤维化的研究进展 |
第一节 西医诊断和治疗肝纤维化的研究进展 |
第二节 中医药治疗肝纤维化的研究进展 |
第二章 柴芪益肝方治疗肝郁脾虚型慢性乙型肝炎肝纤维化的临床回顾性研究 |
前言 |
第一节 临床资料 |
第二节 分组与治疗 |
第三节 结果分析 |
第四节 讨论与小结 |
第三章 基于网络药理学探讨柴芪益肝方治疗肝纤维化的作用机制 |
前言 |
第一节 资料与方法 |
第二节 结果 |
第三节 讨论与小结 |
第四章 柴芪益肝方对四氯化碳诱导的小鼠肝纤维化的作用及机制研究 |
前言 |
第一节 材料与研究方法 |
第二节 指标检测 |
第三节 结果 |
第四节 讨论与小结 |
结语 |
创新点 |
不足与展望 |
参考文献 |
致谢 |
在学期间主要研究成果 |
(4)基于肠道菌群探讨抗纤软肝颗粒防治肝纤维化的临床疗效与作用机制(论文提纲范文)
摘要 |
Abstract |
中英文缩略词表 |
前言 |
第一部分 理论研究 |
1 肝纤维化相关机制研究进展 |
2 中医“从脾治肝”历史沿革 |
3 粪菌移植研究进展 |
4 肠道菌群在肝纤维化进展中的作用及治疗新策略 |
第二部分 临床研究 抗纤软肝颗粒对乙肝肝纤维化患者肠道菌群的作用 |
1 资料与方法 |
2 结果 |
3 讨论 |
第三部分 实验研究 |
第一节 抗纤软肝颗粒对肝纤维化小鼠模型的影响 |
1 对象、材料与方法 |
2 结果 |
3 讨论 |
第二节 粪菌移植对伪无菌肝纤维化小鼠模型的作用 |
1 对象、材料与方法 |
2 结果 |
3 讨论 |
结语 |
参考文献 |
附录一:博士期间研究成果 |
附录二:综述 中医药防治肝纤维化研究进展 |
参考文献 |
附录三:部分实验结果 |
致谢 |
(5)壮肝逐瘀煎对肝纤维化大鼠BMP7/SmadS信号通路的影响(论文提纲范文)
中文摘要 |
abstract |
引言 |
1.实验材料 |
1.1 实验动物 |
1.2 实验药物 |
1.3 主要实验试剂 |
1.4 主要实验试剂的配制 |
1.5 主要仪器设备 |
2.实验方法 |
2.1 肝纤维化模型的构建 |
2.2 动物给药干预 |
2.3 动物取材 |
2.4 动物的一般情况收集 |
2.4.1 大鼠体重的变化情况 |
2.4.2 肝脏指数 |
2.5 ALT、AST、TBIL检测 |
2.6 RT-qPCR法检测BMP7、Smad2、Smad3、Smsd7、TGFβ-1 mRNA的表达量 |
2.6.1 准备去除RNA酶的实验器具 |
2.6.2 设计引物、合成引物 |
2.6.3 提取肝组织总RNA |
2.6.4 测定RNA浓度 |
2.6.5 RT-PCR逆转录合成c DNA |
2.6.6 RT-PCR扩增反应 |
2.6.7 RT-PCR结果分析 |
2.7 Western blot法检BMP7、Smad2、Smad3、Smad7、TGFβ-1 蛋白的表达量 |
2.7.1 提取肝组织蛋白 |
2.7.2 BCA蛋白浓度测定 |
2.7.3 蛋白变性 |
2.7.4 聚丙烯酰胺凝胶制备 |
2.7.5 电泳 |
2.7.6 转膜 |
2.7.7 洗涤、封闭 |
2.7.8 孵育一抗、二抗 |
2.7.9 显影、拍照、条带分析 |
2.8 肝组织HE染色 |
2.9 Masson检测 |
3 实验结果 |
3.1 大鼠的一般情况 |
3.1.1 大鼠的行为状态 |
3.1.2 大鼠体重情况变化 |
3.1.3 大鼠肝脏指数结果 |
3.1.4 大鼠肝脏外观的情况比较 |
3.2 各组大鼠血清中ALT、AST、TBIL的情况 |
3.3 PCR结果 |
3.4 Western blot结果 |
3.5 HE结果 |
3.6 Masson结果 |
4 讨论 |
4.1 TGF-β1/Smads信号通路与肝纤维化 |
4.2 BMP7与TGF-β1/Smads信号通路 |
4.3 中医对肝纤维化的认识 |
4.3.1 化痰行瘀法 |
4.3.2 肝主疏泄理论 |
4.3.3 络病理论 |
4.4 中医药防治肝纤维化 |
4.4.1 名医观点及治疗经验 |
4.4.2 中药复方防治肝纤维化 |
4.4.3 单味中药抗肝纤维化的药理研究 |
4.5 壮肝逐瘀煎的中医理论及基础实验研究 |
4.5.1 壮肝逐瘀煎抗肝纤维化的疗效及机制研究 |
4.6 对于肝纤维化动物模型构建方法的选择 |
4.7 阳性对照药物抗肝纤维化的研究概况 |
4.7.1 秋水仙碱在抗肝纤维化中的作用 |
4.7.2 复方鳖甲软肝片在抗肝纤维化中的作用 |
4.8 中医药抗肝纤维化的研究热点及未来方向 |
4.8.1 miRNA在肝纤维化形成过程中的作用 |
4.8.2 实验的不足之处以及壮肝逐瘀煎的未来研究方向 |
结论 |
参考文献 |
缩略词表 |
综述 长链非编码 RNA 在抗肝纤维化中作用的研究进展 |
参考文献 |
致谢 |
个人简介及攻读学位期间获得的科研成果 |
(6)不同旋光性吡喹酮抗肝纤维化作用的研究(论文提纲范文)
中文摘要 |
Abstract |
前言 |
第一部分 不同旋光性吡喹酮对CCl_4诱导肝纤维化小鼠作用的研究 |
材料与方法 |
1 实验材料 |
2 实验方法 |
结果 |
1. 小鼠肝纤维化造模检测 |
2. 小鼠体重 |
3. 小鼠肝脏切片Masson染色 |
4. 小鼠血清肝纤四项检测 |
5. 小鼠肝脏RT-PCR检测 |
6. 小鼠肝脏羟脯氨酸含量检测 |
小结 |
第二部分 不同旋光性吡喹酮体外对肝星状细胞影响的研究 |
材料与方法 |
1 实验材料 |
2 方法 |
结果 |
1.不同旋光性吡喹酮对活化LX-2细胞增殖能力的影响 |
2.不同旋光性吡喹酮对活化LX-2细胞的迁移能力的影响 |
3.不同旋光性吡喹酮对LX-2细胞活化相关基因mRNA水平的影响 |
4.不同旋光性吡喹酮对LX-2细胞活化相关基因蛋白水平的影响 响 |
小结 |
讨论 |
参考文献 |
硕士在读期间研究成果 |
致谢 |
综述 吡喹酮抗肝纤维化作用研究进展 |
参考文献 |
(7)基因转染技术在抗肝纤维化中应用的研究进展(论文提纲范文)
1 基因治疗的概述 |
2 转染技术的概述 |
2.1 病毒感染方法 |
2.1.1 逆转录病毒载体法: |
2.1.2 慢病毒载体法: |
2.2 非病毒转染方法 |
2.2.1 化学转染法: |
2.2.2 生物、物理及其他转染方法: |
3 基因转染技术在肝纤维化中的应用 |
3.1 基因转染调控蛋白抗肝纤维化 |
3.2 基因转染调控HSC活化抗肝纤维化 |
3.3 基因转染调控信号通路抗肝纤维化 |
3.4 基因转染保护肝细胞发挥抗肝纤维化作用 |
4 小 结 |
(8)DNMT3A介导LncRNA ANRIL甲基化促进肝纤维化的分子机制(论文提纲范文)
英文缩略词表(Abbreviation) |
中文摘要 |
英文摘要 |
引言 |
第一部分 临床肝纤维化患者样本中DNMT3A、ANRIL、α-SMA、Collagen I的差异表达 |
1.1 前言 |
1.2 实验材料 |
1.3 实验方法 |
1.4 实验结果 |
1.5 讨论 |
1.6 小结 |
第二部分 小鼠肝纤维化组织和肝星状细胞中DNMT3A、ANRIL、α-SMA、Collagen I的表达及ANRIL启动子区域甲基化水平 |
2.1 前言 |
2.2 实验材料 |
2.3 实验方法 |
2.4 实验结果 |
2.5 讨论 |
2.6 小结 |
第三部分 DNMT3A 介导 ANRIL 甲基化在肝纤维化与 HSCs增殖中的分子作用机制 |
3.1 前言 |
3.2 实验材料 |
3.3 实验方法 |
3.4 实验结果 |
3.5 讨论 |
3.6 小结 |
全文总结 |
本论文的创新性及特色 |
有待进一步研究的问题 |
参考文献 |
攻读博士学位期间取得的学术成果 |
致谢 |
综述 表观遗传调控肝纤维化中炎症与HSCs激活:聚焦DNA甲基化和组蛋白修饰 |
参考文献 |
(9)重组腺相关病毒载体介导的环状RNA circFBXW4在肝纤维化中的功能及机制研究(论文提纲范文)
中英文缩略词对照 |
中文摘要 |
Abstract |
1 前言 |
2 实验材料 |
2.1 实验动物 |
2.2 实验细胞 |
2.3 实验物品 |
2.4 仪器与设备 |
3 实验方法 |
3.1 小鼠肝纤维化形成和逆转模型的建立 |
3.2 原位灌流小鼠原代细胞 |
3.3 circFBXW4 腺相关病毒载体的构建与鉴定 |
3.4 circFBXW4 腺相关病毒的包装 |
3.5 小鼠尾静脉注射腺相关病毒 |
3.6 血清谷丙转氨酶的测定 |
3.7 血清谷草转氨酶的测定 |
3.8 肝组织羟脯氨酸的测定 |
3.9 肝组织苏木精-依红染色(hematoxylin eosin,HE)染色 |
3.10 肝组织Masson染色 |
3.11 免疫荧光染色 |
3.12 免疫组织化学(immunohistochemistry,IHC)染色 |
3.13 肝星状细胞培养 |
3.14 脂质体介导细胞转染小干扰 RNA(small interfering RNA,siRNA) |
3.15 质粒大提和细胞转染 |
3.16 流式分析细胞周期 |
3.17 流式分析细胞凋亡 |
3.18 CCK8 细胞增殖试验 |
3.19 EDU-555 细胞增殖检测 |
3.20 DNA提取 |
3.21 双萤光素报告基因检测 |
3.22 RNA提取 |
3.23 细胞质、细胞核RNA分离提取 |
3.24 Real-time qPCR |
3.25 microRNA qPCR |
3.26 冰冻切片RNA荧光原位杂交 |
3.27 蛋白提取和变性 |
3.28 Western blot |
3.29 数据处理方法 |
4 实验结果 |
4.1 小鼠肝纤维化模型的构建及鉴定 |
4.2 肝脏原代肝星状细胞中circRNAs高通量测序及分析 |
4.3 circFBXW4 在肝纤维化进展及逆转过程中的表达变化 |
4.4 环状RNA circFBXW4 的分子组成、稳定性及亚细胞定位 |
4.5 重组腺相关病毒载体介导的circFBXW4 过表达对小鼠肝纤维化的影响 |
4.6 慢病毒载体介导的circFBXW4 过表达对肝星状细胞活化,增殖及凋亡的影响 |
4.7 阳离子脂质体介导的circFBXW4 沉默对肝星状细胞活化及增殖的影响 |
4.8 原代肝星状细胞中micro RNA芯片检测及circFBXW4 ceRNA机制分析 |
4.9 miR-18b-3p对小鼠肝星状细胞活化的影响 |
4.10 原代肝星状细胞中circRNAs-microRNAs-mRNAs分子调控机制的研究 |
4.11 阳离子脂质体介导的FBXW7 过表达/沉默对肝星状细胞的影响 |
4.12 circFBXW4 靶向miR-18b-3p调控FBXW7 信号通路 |
5 讨论 |
5.1 第一部分:肝纤维化小鼠的原代肝星状细胞中差异表达的circRNAs高通量测序及分析 |
5.2 第二部分:重组腺相关病毒载体、慢病毒载体、阳离子脂质体介导circFBXW4 在体内、体外对肝纤维化和肝星状细胞活化的影响 |
5.3 第三部分:circFBXW4 通 过靶向miR-18b-3p调控FBXW7信号通 路的ceRNA机制研究 |
6 结论 |
7 参考文献 |
附录 |
致谢 |
综述 环状RNA在肝脏相关疾病中的研究进展 |
参考文献 |
(10)肝纤维化小鼠模型的建立及血清生物标志物群的筛选研究(论文提纲范文)
中英文缩略词对照(Abbreviations) |
中文摘要 |
Abstract |
第一章 不同类型的肝纤维化小鼠模型的建立与评价 |
1.前言 |
2.材料与方法 |
2.1 实验仪器 |
2.2 药品与试剂 |
2.3 实验动物 |
3.实验方法 |
3.1 溶液配制 |
3.2 动物实验方法 |
3.2.1 CCl_4诱导的急性肝纤维化模型 |
3.2.2 CCl_4诱导的慢性肝纤维化模型 |
3.2.3 高脂高糖饮食诱导的早期肝纤维化模型 |
3.2.4 高脂高糖饮食诱导的晚期肝纤维化模型 |
3.2.5 胆管结扎诱导胆汁淤积性肝纤维化模型(BDL模型) |
3.3 血清生化指标检测 |
3.4 病理切片分析 |
3.5 实时荧光定量PCR分析基因表达 |
3.5.1 肝组织样本处理 |
3.5.2 Total RNA的提取 |
3.5.3 逆转录(RT) |
3.5.4 实时荧光定量 PCR(qRT-PCR) |
3.6 数据统计分析 |
4.实验结果 |
4.1 CCl_4诱导的急性肝纤维化模型 |
4.2 CCl_4诱导的慢性肝纤维化模型 |
4.3 高脂高糖饮食诱导的早期肝纤维化模型 |
4.4 高脂高糖饮食诱导的晚期肝纤维化模型 |
4.5 胆管结扎诱导胆汁淤积性肝纤维化模型 |
5.讨论 |
6.结论 |
第二章 肝纤维化小鼠模型的血清代谢组学研究 |
1.前言 |
2.材料与方法 |
2.1 实验仪器 |
2.2 药品与试剂 |
3.实验方法 |
3.1 溶液配制 |
3.2 样本处理 |
3.2.1 血清样本前处理 |
3.2.2 质控(QC)样本前处理 |
3.3 仪器分析方法 |
3.3.1 色谱条件 |
3.3.2 质谱条件 |
3.3.3 质量轴调谐与校正和质量控制 |
3.4 数据处理方法 |
3.4.1 数据预处理 |
3.4.2 多元统计分析 |
3.4.3 物质鉴定 |
3.4.4 生物标志物筛选 |
3.4.5 代谢通路分析 |
4.实验结果 |
4.1 质控(QC)样本考察 |
4.2 各组肝纤维化模型血清代谢轮廓分析 |
4.3 多元统计分析 |
4.4 生物标志物的鉴定与筛选 |
4.5 潜在肝纤维化共同代谢物和代谢通路分析 |
4.6 肝纤维化模型代谢标志物含量分析 |
5.讨论 |
6.结论 |
参考文献 |
附录 个人简历 |
致谢 |
综述 肝纤维化临床非侵入性诊断方法研究 |
参考文献 |
附件 |
四、肝纤维化的基因治疗(论文参考文献)
- [1]芝麻活性成分调控FXR/SHP/LXR信号改善肝纤维化进程的机制研究[D]. 侯丽爽. 延边大学, 2021(02)
- [2]CCL4诱导小鼠肝纤维化模型基因芯片整合分析及核心基因的筛选验证研究[D]. 张兴旺. 吉林大学, 2021(01)
- [3]柴芪益肝方治疗肝纤维化的临床和实验研究[D]. 周怡驰. 北京中医药大学, 2021(01)
- [4]基于肠道菌群探讨抗纤软肝颗粒防治肝纤维化的临床疗效与作用机制[D]. 徐俊. 湖北中医药大学, 2021(01)
- [5]壮肝逐瘀煎对肝纤维化大鼠BMP7/SmadS信号通路的影响[D]. 梁仁久. 广西中医药大学, 2021
- [6]不同旋光性吡喹酮抗肝纤维化作用的研究[D]. 袁轩. 江苏省血吸虫病防治研究所, 2021(01)
- [7]基因转染技术在抗肝纤维化中应用的研究进展[J]. 艾丁丁,罗伟生. 广西医学, 2021
- [8]DNMT3A介导LncRNA ANRIL甲基化促进肝纤维化的分子机制[D]. 杨晶晶. 安徽医科大学, 2021(01)
- [9]重组腺相关病毒载体介导的环状RNA circFBXW4在肝纤维化中的功能及机制研究[D]. 陈鑫. 安徽医科大学, 2021(01)
- [10]肝纤维化小鼠模型的建立及血清生物标志物群的筛选研究[D]. 程龙浩. 安徽医科大学, 2021(01)
标签:吡喹酮论文; 肝纤维化指标检查论文; 细胞增殖论文; 基因治疗论文; 血清蛋白论文;