一、武钢5号高炉煤粉喷吹系统的改造(论文文献综述)
阎峰,莫朝兴,郑镇鹏,贝纪承[1](2020)在《柳钢2号高炉冶炼技术的进步》文中进行了进一步梳理对柳钢2号高炉近年来的冶炼技术的进步进行了全面的总结分析。2号高炉自2012年9月投产以来,通过采取持续推进精料技术、优化操作制度、改进优化关键设备等措施,冶炼技术取得了明显的进步,主要技术经济指标平稳提高,高炉利用系数从2015年的2.272逐步提高至2019年(1—6月)的2.710,实现了高产与稳定的均衡发展。
刘璐[2](2019)在《包钢4150m3高炉风口曲损的分析研究与治理》文中研究说明高炉炼铁是钢铁生产的重要环节,风口是保证高炉正常生产的关键设备,位于高炉炉缸上方,由于风口所处环境十分恶劣,导致风口极易破损。包钢两座4150m3高炉自开炉6个月后就开始出现风口曲损的问题,最严重的时候,38个风口仅有20个风口可以喷煤。风口曲损后严重影响高炉的稳定顺行,制约了高炉进一步强化冶炼。同时,休风更换风口带来的直接产量损失和间接经济损失都非常大。因此,找出导致风口曲损的原因,制定解决措施刻不容缓。本文从异常炉况、装料制度、气流分布、入炉碱负荷、炉前出铁等方面进行研究,剖析原因,通过优化装料制度、维护合理炉型、探索适宜的送风制度、控制有害元素负荷、优化风口参数、加强炉前出铁管理方面制定了合理的解决措施,逐步消除了风口曲损现象,延长了风口使用寿命,实现高炉稳定顺行。在风口曲损与炉况顺行关系的研究中,发现悬料、崩料等异常炉况容易使炉料直接进入炉缸,其重力作用到风口上导致风口曲损,因此保持炉况稳定顺行是高炉风口曲损大幅减少的基础。摸索到了重要参数的合理控制范围:中心气流指数Z值范围8-12、边缘气流指数W值范围0.8-1.2;理论燃烧温度Tf值在2150℃-2300℃;鼓风动能范围850011000kg·m·s-1;热负荷范围(9000-10500)×10MJ·h-1、理论燃烧温度范围(2150±100)℃。在风口曲损与装料制度关系的研究中,通过对炉料的批重,布料方式的探索,制订了合理的布料矩阵,采用了疏松边缘气流、稳定中心气流的制度,异常炉况大幅减少,操作炉型逐渐趋于合理。在风口曲损与炉渣碱度关系的研究中,分析了提高自产矿入炉比例后,对炉内整体透气透液性及风口曲损情况的影响,提出了优化配料结构,降低有害元素含量高的矿种的配比,适当降低炉渣碱度至1.08左右等措施,从而减轻入炉有害元素对炉况造成的影响。在风口曲损与出铁管理关系的研究中,认为确保铁口深度在合理范围内(3.7m4.2m),可以为良好的炉前作业创造条件。
丁冬冬[3](2019)在《高炉风口回旋区流动与燃烧特性研究》文中研究表明钢铁工业是支撑国民经济发展的重要产业,对于现代工业发展至关重要,高炉是炼铁过程中的主要设备之一。高炉风口回旋区是高炉炼铁过程的“心脏”,影响高炉内焦炭燃烧、渣铁生成、炉况顺行以及煤气分布,回旋区内的物理化学反应又会影响软熔带和滴落带的大小、形状以及上部炉料的预热、顺行,风口回旋区对于高炉的整体冶炼至关重要。本文根据鞍钢3200m3高炉的操作参数和高炉尺寸,建立冷态实验模型、三维CFD-DEM数值模型和回旋区喷煤燃烧数值模型,研究了风口回旋区内的流动与燃烧特性,具体研究内容和成果如下:首先,根据高炉尺寸,由相似原理,设计并搭建了冷态物理模型,研究了鼓风量、风口向下倾斜角度、风口直径以及风口插入深度等因素对风口回旋区的深度和高度的影响。正交实验结果表明:鼓风量对于回旋区的深度和高度的影响程度最强,风口直径次之,风口插入深度再次之,风口向下倾斜角度最弱。单因素实验结果表明:风口回旋区的高度和深度随着鼓风量、风口插入深度增大而增加,而风口直径越大,回旋区的深度和高度越小,风口向下倾斜角度增大时,回旋区的深度和高度先增大后减小。其次,采用CFD-DEM方法建立了风口回旋区三维数值模型,获得了不同时刻风口回旋区内颗粒运动状态和速度矢量图,研究了鼓风风速、风口向下倾斜角度及风口尺寸对回旋区大小的影响规律。结果表明:风口回旋区的深度和高度随着鼓风风速的增大而增加,回旋区深度随着鼓风入射角度的增大而减小,回旋区高度随着鼓风入射角度的增加则增大,而风口尺寸增大时,风口回旋区的深度和高度急剧减小。最后,建立了高炉风口回旋区喷吹煤粉燃烧过程数值模型,研究了高炉喷吹煤粉时风口回旋区内的速度场、温度场以及组分分布规律,结果表明:高炉鼓风进入回旋区后,大部分气流在回旋区内作回旋运动,部分气体穿过回旋区进入焦炭层,速度衰减明显。由于气流的运动,回旋区内上部和下部分别形成高温区。煤粉的燃烧反应主要在风口回旋区发生,O2在风口前缘就被完全消耗,回旋区内煤粉燃烧主要生成CO2和CO,在焦炭层剩余焦炭与CO2发生反应,大量生成CO。鼓风速度的加强能够促进煤粉燃烧,回旋区内平均温度提高,CO含量降低,CO2含量增加;鼓风温度的提高加快煤粉燃烧速率的同时也促进CO2还原反应的发生,CO含量升高,回旋区内平均温度有所下降;喷吹煤粉的增多导致回旋区内平均温度不断降低,CO含量增加,CO2含量降低。
邓孝天[4](2019)在《提高达钢5#高炉喷煤量的研究》文中研究说明高炉喷煤是指在高炉在冶炼过程中,直接从风口向炉内喷吹经过研磨的煤粉的一种工艺,是高炉冶金工业中降低生产成本,提高经济效益的重要技术手段。四川达钢一直以来不断探索和试验适宜的煤种和合理的配煤比,以提高喷煤比,降低喷煤成本,取得更大的经济效益。兰炭和干熄焦除尘灰作为相对廉价的固体燃料适量配入喷吹用煤,可以较大幅度的降低生产成本。本文通过对达钢现有喷吹用煤和兰炭、除尘灰的可磨性、燃烧性、爆炸性、反应性研究得出:(1)兰炭粉煤达到了达钢高炉喷吹用煤的标准,可以在达钢高炉进行混合喷吹。但是兰炭粉煤的水分高,灰分高、恒容低位发热值低、可磨性较差,单混合喷吹比例应≤20%。(2)干熄焦除尘灰的反应性、燃烧性、可磨性都较差,但从节约成本,利用废弃资源的角度出发,5%的配加比例是合理的。(3)经过工业试验证明,20%兰炭粉煤+45%恒大煤+30%瑞升烟煤+5%干熄焦除尘灰的混合煤配比确实具备良好的经济性能及喷吹性能。(4)20%兰炭粉煤+45%恒大煤+30%瑞升烟煤+5%干熄焦除尘灰的混合煤配煤方案在在粒度组成为小于200目的比例为60%,水分含量1%及富氧2-3%的条件下能达到最好的燃烧效率。(5)在为期一个月的工业试验过程中,5#高炉采用了20%兰炭粉煤+45%恒大煤+30%瑞升烟煤+5%干熄焦除尘灰的混合煤配煤方案,经济技术指标有较大的提升,综合燃料比降低了1.69kg/t;焦比降低了7.18kg/t;喷煤比提高了5.48kg/t。5#高炉使用混合煤试验方案每年能产生的直接经济效益则为1566万元。
梁为秋[5](2019)在《死料柱对铁水流动状况影响的数值模拟》文中研究说明高炉炉缸侵蚀与炉缸内铁水流动状态密切相关,铁水的流动冲刷是造成炉缸侧壁剪切应力增大、引起炉缸侧壁温度升高、影响高炉寿命的重要原因之一。高炉炉缸铁水流动行为很大程度上取决于死料柱状态及出铁操作,为延长高炉炉缸寿命,课题以流体力学相关理论为基础,通过FLUENT软件模拟计算,死料柱不同浮起高度、不同孔隙度和出铁口不同流量条件下的炉缸内铁水流动规律和炉底、炉缸侧壁剪切应力分布规律,现结论如下:1)铁水从入口平面到出铁口之间的流动并不是沿着距离最短的直线路径运动的,而是具有一定的路径向出铁口运动。2)死料柱沉座炉底是产生铁水环流的主要原因。死料柱浮起高度增加,可以有效降低铁水环流,同时使炉底铁水流动分布更加均匀。3)死料柱浮起高度在一定范围内增高时,炉底中心剪切应力相应增大,但当死料柱浮起高度超过一定范围后再增高,炉底中心剪切应力则呈现变小的趋势。炉底边缘剪切应力随着死料柱浮起高度增加而一直变小。4)死料柱孔隙度变大,会降低死料柱内铁水流量,无焦空间和缝隙铁水流量变大。死料柱孔隙度变化,对出铁口对面的炉缸侧壁整体受到冲刷侵蚀的影响十分有限,对出铁口一侧炉缸侧壁的铁水冲刷侵蚀无影响。5)出铁口流量变大,对炉缸铁水流动状态影响不大,但缝隙和无焦空间铁水流速增加,炉底和炉缸侧壁剪切应力逐渐变大,受到的冲刷侵蚀加剧。图57幅;表6个;参52篇。
朱利[6](2019)在《首秦经济炼铁技术的相关基础研究》文中研究表明首秦公司高炉铁水成本占最终产品钢板的成本62%,高炉炼铁原、燃料成本占铁水成本的80~90%,高效低成本获得满足炼钢要求的铁水是首秦炼铁工作者不断追求的目标。2008年后,由于首秦公司产品单一、国内钢铁产能过剩和在原、燃料市场没有话语权等因素,首秦公司开始采用经济炉料炼铁的方针来降低高炉铁水的成本。本文针对原、燃料质量下降和价格升高的情况,在铁矿粉烧高温烧结特性、不同高炉炉料结构的熔滴和熔化特性、焦炭与铁矿石还原动力学和炉缸焦炭劣化性能、高炉风口理论燃烧温度等高温性能方面进行了深入的基础研究。之后,在首秦高炉进行了经济炉料与不同质量焦炭的协同生产实践,达到了经济炉料炼铁的目的。本论文主要开展的研究工作和得到结果如下:(1)采用了以实际烧结生产温度为基准,考虑整个过程变化,量纲为1的同化反应特征数和流动性能特征数,测定了首秦不同铁矿粉的高温烧结特性,并对首秦烧结用铁矿粉的高温烧结性能进行了分类。烧结生产中采用的是不同种类铁矿粉、熔剂及各种返回料的混合料,本文分别对首秦烧结正常生产中不同种类铁矿粉混合料和烧结生产用二混混合料的高温烧结特性进行了测定,给出了在能够满足高炉生产要求的烧结矿质量的同化反应特征数和流动性能特征数的范围,作为高温烧结特性的标准。将该标准应用到指导适合配入高性价比铁矿粉的烧结生产中,以适应贫杂矿等经济炉料的合理使用及其原料结构频繁变化的需要,为烧结生产提供必要依据。该方法可与传统的周期较长的烧结杯实验配矿的方法,互为补充,指导烧结原料优化和配矿使用。(2)为增加高炉使用天然铁矿块的比例降低炼铁成本,采用高温荷重熔滴试验和还原反应试验探索性地研究了含铁炉料的熔化特性,对经济炉料炼铁时首秦高炉炉料结构进行优化。本文利用可视化卧式炉装置,提出了一种快速测量含铁炉料熔化特性的方法。还原条件下含铁炉料熔化特性是影响高炉软熔带的主要因素之一,荷重熔滴特征值和反应熔化特性都可作为反映含铁炉料对高炉软熔带影响的特征参数。通过对首秦高炉使用超高碱度烧结矿和价格较低的天然铁矿块的炉料结构优化发现,荷重熔化特征值与反应熔化参数对表征高炉炉料结构的熔化特性有很好的一致性和关联性。还原反应熔化特性的验方法具有过程可视、快速、简便、成本低、反映主要信息的优点,作为高温荷重熔滴试验方法的补充,指导高炉炉料结构优化和经济炉料炼铁。(3)冶金反应工程学研究认为高温冶金反应在前期控制环节是化学反应,后期控制环节是分子扩散。论文采用分段尝试法研究了在不同质量的焦炭、不同粒度的焦炭、焦炭的不同加入方式和不同CO2含量还原气氛等条件下的矿焦还原反应过程动力学,得到两种反应过程的动力学参数和控制环节的转换时间点,为反应过程模拟提供必要的定解条件参数。通过分段尝试研究反应过程动力学的法,定量分析了不同质量焦炭对烧结矿还原的影响,确定了化学反应过程和分子扩散过程的反应机理,对高炉生产提供必要的基础。(4)在经济炉料炼铁时燃料质量下降的一个重要指标是灰分含量增加,随着灰分增加,燃料中Si02含量明显增加。经济炉料炼铁时需要考虑到高炉风口前喷入煤粉和不同质量焦炭灰分中的Si02还原、强吸热对风口前理论燃烧温度的影响。通过风口回旋区热平衡计算,在考虑Si02还原条件下,修正了高炉风口前理论燃烧温度的计算公式,计算了不同各因素对高炉风口理论燃烧温度的影响,为首秦高炉使用不同质量焦炭和经济炉料生产提供指导。(5)首秦高炉的焦炭全部为外购,受市场波动的影响很大,在经济炉料炼铁时,要根据可获得的不同质量的焦炭,确定高炉焦炭负荷。在前期高炉原料冶金性能和不同质量焦炭还原性能研究的基础上,对一级焦与经济矿、二级焦与经济矿、三级焦与经济矿的高效低成本炼铁进行了大量工业实践,对几种模式下高效低成本协同生产的工艺控制因素进行了探讨和摸索,在不同模式下均实现了矿焦协同的高效低成本炼铁和良好的经济效益。
张少伟,余赋,刘洋,李昕洋,范旭庚,杜建华[7](2017)在《首钢京唐5500m3高炉浓相喷煤自动控制系统的优化实践》文中研究表明本文介绍了首钢京唐钢铁厂5500m3高炉并罐双管路浓相煤粉喷吹系统构成,充分剖析了浓相喷吹系统的各组成部分。针对日常运行过程中出现的堵煤和喷吹瞬时量波动较大的典型问题,本文结合传统控制理论及控制方式,在自动控制策略、压力修正及煤粉流量检测方面对浓相喷吹控制系统进行了优化,形成了具备自身特点的复合控制策略,并通过罐压修正解决了调节阀处阻煤问题,通过煤粉流量检测分段选投解决了流量检测偏差大的问题。通过以上优化措施,并进行实际生产应用,取得了较好的实践效果,控制系统优化实施后喷煤量长期稳定在11 0t/h,喷煤量误差控制在2%范围内,系统喷吹稳定性及喷吹精度得到有效改善。
孙炎[8](2017)在《高炉喷煤自动化控制系统的设计与实现》文中认为伴随着国内自动化水平的逐年提高,大多数的钢铁企业为了降低生产过程中所消耗的成本,探索许多种节能降耗的办法。经过多年的研究,高炉喷煤成为众多钢铁企业降低焦比,增加产能的最有效的途径。我国很多的钢铁企业对高炉喷煤技术的研发与应用起步也是非常的早,但就现状来看,已经不再处于领先地位,因此继续提高喷煤系统的全自动水平就显得非常有意义了。本篇论文的研究对象为高炉喷煤的自动化系统,该系统使用的PLC产品为ROCKWELL公司生产的CONTROLLOGIX1756-L62冗余通讯模块等产品,该系统在设计与实现过程中完成的主要工作包括:(1)详细的分析与调研了高炉喷煤系统的工艺和需求,并总结设计了高炉喷煤自动化系统的整体基础架构。(2)提出高炉喷煤自动化系统的硬件方案,根据现场设备的要求以及点号的数量对硬件系统进行设计,确定了各种控制模块的型号,并对其网络方案进行了论证。(3)设计了高炉喷煤自动化系统的软件。该软件包括:人机界面系统设计,主要有制粉系统、喷吹系统的自动控制界面,其中对各种所需要测量的设备(如压力、流量、温度、重以及气体分析参数)进行监测和对各个阀体进行控制实现生产;程序设计,将煤粉喷吹罐的罐内压力放散、装煤、充压、和喷吹的自动化程序进行设计,以及对三个喷吹罐所需的放散阀、流化阀、充压阀、均压阀、氮气流化阀、下球阀、上球阀的连锁解锁程序的编写以实现各个设备的全自动操作、半自动(部分)操作、手动操作、机旁操作的操作模式。(4)完成了硬件系统和软件系统的实现和测试,并对系统在调试过程中出现的问题进行了修正,列举了一些调试中容易出现的困扰,及相应的解决方案,展示了关键程序的流程图以及移动平均值算法的程序截图。本论文通过研究对备煤、储煤、制粉、喷吹系统的硬件与软件系统进行了详细设计,并基本实现了备煤、制粉、喷吹系统的连锁自动化,降低了煤粉的消耗,实现了系统的优化。目前本文中出现的喷煤自动化系统正在酒泉钢铁新1#高炉喷煤系统中使用,运行状况良好,受到了用户的认可。
武月清[9](2016)在《包头钢铁公司的创建与技术创新(1953-1965年)》文中研究表明包头钢铁公司(简称包钢)是建国初期我国三大钢铁基地之一,它的兴建与投产可视为我国现代钢铁工业早期技术发展的模式,是我国现代钢铁工业化的缩影。对包钢的研究是中国现代钢铁工业史、技术史的一个重要课题。本文在前人的研究基础上通过挖掘档案史料,系统整理与包钢相关的文献,分析包钢建设初期(1953-1965年)在时政影响下的建厂举措,考察现在的炼钢厂、炼铁厂,对包钢铁从苏联引进的技术及受到技术决策影响等方面进行了研究,主要有以下几个方面:第一、本文系统搜集相关档案资料及未公开发表的厂志,对包钢建设初期的发展脉络进行梳理和归纳,分析立项建设包钢的原因,并对比当时中、苏及世界主要产钢国的冶炼技术水平,分析包钢建设初期从苏联引进冶炼技术的水平、所遇技术难题,在自力更生的基础上如何进行技术改造创新等问题。研究认为:包钢因白云鄂博存在稀土共生矿的特殊性,当时我方既无技术根基,又无参考经验,从苏方引进的技术和设备并不适应,遇到了各种技术难题,包钢的技术创新之路围绕解决这些难题展开,包钢的冶炼攻关史就是一部钢铁行业的技术进步史。再者,包钢的大规模建设适逢“大跃进”时期,一系列政治运动导致的技术决策出现偏差和错误,使中国的钢铁行业付出了极大的代价,本文对以包钢为中心的内蒙古“大炼钢铁”运动作进一步分析,总结包钢因没有遵循钢铁行业科学发展规律,技术发展受到重挫的经验教训。这些工作,弥补了这一研究领域的不足,尤其是从科学技术与社会(STS)的角度进行综合考察,分析政治干预对技术决策的影响,指出这是前人关注较少而对包钢技术发展非常重要的因素。第二、根据档案文献等资料,根据档案文献等资料,回顾包钢早期在技术能力本土化的进程中如何培养自己的工程师和工人;总结苏联工程师在包钢建设中的作用和特点;并以首任经理、技术专家型领导干部杨维做为个案进行研究,强调科学决策对人才培养、技术和事业发展的决定性作用。本文文末还对包钢实际建设情况与原有设计规划及同期武汉钢铁公司的建设情况进行对比,研究表明包钢因其矿源的特殊性及政治决策的影响程度大于武钢,致使其技术的发展落后于武钢,对后续的建设影响也比较大。第三、本文把包钢的发展置于现代钢铁技术体系下进行研究,表明包钢虽在建设初期遇到种种困难,未能按最初的规划如期建成,但在北方边疆地区,包钢平地起家,不仅在少数民族地区、也是当时华北地区唯一的一家大型钢铁基地,后来又发展成为世界最大的稀土工业基地和内蒙古自治区最大的工业企业,对于全国钢铁工业合理布局的形成,尤其是带动整个自治区为工业为中心的国民经济发展,起到不可估量的作用,因此不能因包钢遭受的损失低估它对钢铁技术现代化的意义。中国现代钢铁工业技术起步于从苏联引进的技术,然后逐步走上自力更生技术创新之路,其发展是在跌宕起伏的社会背景下进行的,不同时期采用的技术政策对钢铁行业发展的影响至关重要,总结各个阶段技术发展的特点,可看出技术决策的决定性作用;包钢的技术路线反映出中国现代钢铁工业技术发展的变迁,并对今天的技术创新,起到积极的借鉴作用。
金鹏[10](2016)在《基于多层次模型的炉顶煤气循环氧气高炉可行性研究》文中指出炼铁系统的CO2排放占钢铁流程总排放的70%以上,降低炼铁系统的碳耗对于减少钢铁产业CO2排放非常重要。高炉炼铁系统经过近几十年的技术发展,运行效率已经大大提高,要想进一步降低炼铁过程的CO2排放,需发展新的低碳炼铁工艺。炉顶煤气循环氧气高炉炼铁技术采用氧气代替热空气鼓风,大量喷吹煤粉,炉顶煤气经脱除CO2后喷吹进高炉循环利用,具有高生产率、高喷煤量、低焦比和低碳排放等优点。本文从基础工艺、关键过程和钢铁流程等不同层次建立模型来分析氧气高炉工艺可行性,获得了关键技术参数影响规律,解析了炉内热化学行为,评估了钢铁流程的能耗和碳排放。本文建立的氧气高炉系统工艺模型包含炉身炉腹区传输与反应模型、风口回旋区燃烧模型以及炉外煤气能质平衡模型。该工艺模型实现了三个子模型的耦合计算,可以更精准地描述炉内热化学过程煤气分配情况。利用该模型,研究了莱钢3号高炉的改造方案和氧气高炉系统关键技术参数的影响规律。研究表明:为了保证炉内合理的理论燃烧温度和较好的铁矿石还原效果,风口循环煤气的流量应为300 Nm3/t-铁左右,鼓风氧气浓度不低于80%,上部炉身循环煤气流量不低于300 Nm3/t-铁:鼓风氧气浓度为炉内直接还原度和炉顶煤气热值的主要影响因素,而循环煤气流量为煤气外供量和工序能耗的主要影响因素;与传统高炉相比,氧气高炉的气体还原性更强,炉内直接还原反应更少,综合能耗和CO2净排放可分别降低6.4%和35.7%。针对氧气高炉工艺带来的炉内关键过程变化,本文通过实验和数值模拟来分析工艺参数设定的合理性。通过三维半周高炉模型实验,研究了炉料下降行为,结果表明:料流下降以平推流为主,氧气高炉带来的气流减少和生产率提高对炉料下降行为影响很小,风口回旋区尺寸变化对炉腹区域汇聚流有一定影响。通过风口回旋区三维模型来分析煤粉燃烧行为,结果表明:氧气含量提高可有效提升煤粉燃烧效果;氧气高炉工况下的回旋区尺寸减小,而煤粉喷吹量又期望有大幅提高,这些都对煤粉的燃烧不利,需通过喷吹循环煤气和适当的炉型改造来扩大回旋区,保证煤粉的燃烧效果。通过全炉传输与反应过程二维模型,研究煤气循环的影响,结果表明:与传统高炉相比,氧气高炉的气流较小,软融带更薄:提高炉身煤气喷吹量,可提升气固温度及软融带位置,增强炉内气氛还原性,加快铁氧化物还原速度。但循环煤气喷吹量需控制在合理范围来避免炉顶煤气温度过高,造成炉顶设备无法正常运行,并因高温煤气排出损失大量热能。结合实际钢厂生产运行数据,建立钢铁流程的物质流、能量流模型,来评估氧气高炉钢铁流程的能耗和碳排放。氧气高炉应用后,钢铁流程煤消耗量减少26.1%,制氧需求量提高1.7倍,电力消耗量提高50.9%,副产煤气总产量降低53.4%,地钢厂副产煤气供需平衡的基础上,氧气高炉钢铁流程可实现煤气零放散。氧气高炉钢铁流程的综合能耗受电力折标系数影响较大。随着我国发电效率提高和火电比例降低,电力等价值会不断减小,氧气高炉钢铁流程的节能潜力会随之增大。若捕集的CO2不封存,氧气高炉钢铁流程的C02直接排放可比传统流程降低26.2%;若捕集的C02实现封存,CO2直接排放和净排放可比传统流程分别降低56.5%和40.9%。炉顶煤气循环氧气高炉是新颖,并存在争议的低碳炼铁技术。希望本文的方法和结果能够为我国该技术的发展提供帮助,并为该技术的理论基础和工程应用提供指导。
二、武钢5号高炉煤粉喷吹系统的改造(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、武钢5号高炉煤粉喷吹系统的改造(论文提纲范文)
(2)包钢4150m3高炉风口曲损的分析研究与治理(论文提纲范文)
摘要 |
Abstract |
1 文献综述 |
1.1 引言 |
1.2 国内外高炉风口的发展情况 |
1.2.1 国内发展情况 |
1.2.2 国外发展状况 |
1.3 影响风口使用寿命的原因 |
1.3.1 风口破损机理 |
1.3.2 客观因素 |
1.3.3 高炉操作 |
1.4 提高风口使用寿命的举措 |
1.4.1 优化风口结构 |
1.4.2 改善冷却水条件 |
1.4.3 提高风口材质和制造质量 |
1.4.4 对风口表面进行强化处理 |
1.4.5 提高操作水平 |
1.4.6 提高喷吹煤粉装置的合理性 |
1.5 选题目的和意义 |
2 包钢两座4150m~3 高炉风口曲损原因分析 |
2.1 基本情况 |
2.1.1 风口结构 |
2.1.2 风口材质 |
2.1.3 曲损情况 |
2.1.4 风口曲损的危害 |
2.1.5 风口曲损的判断方法 |
2.2 风口曲损与异常炉况的关系 |
2.3 风口曲损与装料制度的关系 |
2.3.1 布料矩阵 |
2.3.2 矿焦比(O/C) |
2.4 风口曲损与气流的关系 |
2.4.1 风口曲损与初始气流分布的关系 |
2.4.2 风口曲损与热负荷的关系 |
2.5 风口曲损与碱金属的关系 |
2.5.1 风口曲损与碱负荷的关系 |
2.5.2 风口曲损与锌负荷的关系 |
2.6 风口曲损与出铁及风口尺寸的关系 |
2.6.1 风口曲损与风口尺寸的关系 |
2.6.2 风口曲损与出铁管理的关系 |
2.7 本章小结 |
3 高炉风口曲损的解决措施 |
3.1 优化装料制度,稳定中心气流 |
3.2 维持合理送风制度 |
3.2.1 维持合理的鼓风动能,活跃炉缸 |
3.2.2 送风比的控制 |
3.3 维护合理的操作炉型 |
3.3.1 制定合理的炉体热负荷控制范围 |
3.3.2 热负荷的控制 |
3.4 控制入炉有害元素负荷 |
3.4.1 减少碱金属入炉量 |
3.4.2 降低炉渣碱度 |
3.5 保持炉况稳定顺行 |
3.5.1 炉况顺行的特征 |
3.5.2 保持炉况顺行的重要参数范围 |
3.6 优化风口参数,强化出铁管理 |
3.6.1 优化风口参数 |
3.6.2 加强炉前出铁管理 |
3.7 本章小结 |
结论 |
参考文献 |
在学研究成果 |
致谢 |
(3)高炉风口回旋区流动与燃烧特性研究(论文提纲范文)
摘要 |
Abstract |
主要符号列表 |
第一章 绪论 |
1.1 课题研究背景 |
1.2 高炉炼铁工艺及风口回旋区的形成 |
1.3 课题研究现状 |
1.3.1 高炉风口回旋区的直接法研究 |
1.3.2 高炉风口回旋区物理模型研究 |
1.3.3 高炉风口回旋区数值模拟研究 |
1.4 本文的研究目的和研究内容 |
1.5 本章小结 |
第二章 高炉风口回旋区冷态实验系统 |
2.1 风口回旋区冷态模型设计原理 |
2.2 物理模型模化理论分析 |
2.2.1 气相运动分析 |
2.2.2 颗粒运动分析 |
2.2.3 相似准则数的导出 |
2.3 风口回旋区模型几何参数与物性参数 |
2.4 风口回旋区冷态实验系统 |
2.5 本章小结 |
第三章 高炉风口回旋区冷态试验研究 |
3.1 高炉风口回旋区冷态实验研究内容 |
3.2 风口回旋区正交实验结果与分析 |
3.3 单因素实验结果与分析 |
3.3.1 鼓风量的影响 |
3.3.2 风口直径的影响 |
3.3.3 风口插入深度的影响 |
3.3.4 风口向下倾斜角度的影响 |
3.4 本章小结 |
第四章 高炉风口回旋区冷态数值模拟 |
4.1 模型的基本方程 |
4.1.1 气相模型 |
4.1.2 颗粒相模型 |
4.2 模型建立与参数选择 |
4.3 高炉风口回旋区冷态数值模拟研究 |
4.3.1 风口回旋区内颗粒运动特性 |
4.3.2 风速对风口回旋区尺寸的影响 |
4.3.3 鼓风入射角度对风口回旋区尺寸的影响 |
4.3.4 风口大小对风口回旋区尺寸的影响 |
4.4 本章小结 |
第五章 高炉风口回旋区燃烧数值模拟 |
5.1 模型描述 |
5.1.1 模型控制方程 |
5.1.2 煤粉燃烧模型 |
5.1.3 几何模型和工况参数 |
5.2 风口回旋区燃烧特性 |
5.2.1 风口回旋区流场分布 |
5.2.2 风口回旋区温度场分布 |
5.2.3 风口回旋区气体组分分布 |
5.3 鼓风速度对燃烧特性的影响 |
5.4 鼓风温度对燃烧特性的影响 |
5.5 喷煤速率对燃烧特性的影响 |
5.6 本章小结 |
第六章 全文总结及展望 |
6.1 全文总结 |
6.2 后续工作展望 |
参考文献 |
致谢 |
作者简介 |
(4)提高达钢5#高炉喷煤量的研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 高炉喷煤的意义和发展现状 |
1.1.1 高炉喷煤的意义 |
1.1.2 国内外高炉喷煤的发展与现状 |
1.2 高炉喷煤对煤粉的要求 |
1.2.1 高炉喷吹的煤种 |
1.2.2 高炉喷吹用煤的工艺性能 |
1.2.3 性能要求 |
1.3 课题提出的背景及主要研究内容 |
1.3.1 背景 |
1.3.2 课题主要研究内容 |
2 高炉喷煤基础理论研究 |
2.1 喷煤对高炉冶炼的影响 |
2.1.1 煤粉燃烧对风口回旋区的影响 |
2.1.2 不同煤种气化能力 |
2.1.3 未燃煤粉气化对高炉冶炼过程影响 |
2.2 煤粉在高炉内的燃烧及特点 |
2.2.1 未燃煤粉在高炉内的行为研究 |
2.2.2 高炉内煤粉的燃烧特点 |
2.3 喷煤对高炉冶炼的影响 |
2.3.1 对炉缸煤气量和燃烧带的影响 |
2.3.2 对理论燃烧温度影响 |
2.3.3 对料柱阻损和热交换影响 |
2.3.4 喷煤对铁矿石还原的影响 |
3 达钢喷吹用煤的物理化学性能 |
3.1 达钢喷吹用煤的试验煤样 |
3.2 煤的可磨性能试验设备及方法 |
3.2.1 实验设备 |
3.2.2 实验方法 |
3.3 煤的燃烧性试验研究设备及方法 |
3.3.1 实验设备 |
3.3.2 燃烧率的测定方法 |
3.3.3 煤粉燃烧率 |
3.3.4 实验方案 |
3.4 爆炸性试验的设备及方法 |
3.4.1 实验原理、设备及方法 |
3.5 煤的反应性试验研究设备及方法 |
3.5.1 煤粉气化原理 |
3.5.2 试验设备及试验方法 |
3.6 本章小结 |
4.试验结果及分析 |
4.1 可磨性实验结果及分析 |
4.1.1 单种煤数据 |
4.1.2 单种煤可磨性试验数据分析 |
4.1.3 混合煤可磨性试验数据 |
4.1.4 混合煤可磨性试验数据分析 |
4.1.5 小结 |
4.2 燃烧性的试验结果及分析 |
4.2.1 单种煤燃烧性的试验数据 |
4.2.2 单种煤燃烧性的试验数据分析 |
4.2.3 混合煤燃烧性的试验数据 |
4.2.4 混合煤燃烧性的数据分析 |
4.2.5 小结 |
4.3 爆炸性试验结果分析 |
4.3.1 单种煤爆炸性试验数据 |
4.3.2 单种煤爆炸性数据分析 |
4.3.3 混合煤爆炸性试验数据 |
4.3.4 混合煤爆炸性数据分析 |
4.3.5 小结 |
4.4 反应性试验结果分析 |
4.4.1 单种煤试验煤样粒度分布 |
4.4.2 单种煤反应性试验结果 |
4.4.3 单种煤反应性试验数据分析 |
4.4.4 反应后损失率 |
4.4.5 混合煤反应性试验结果 |
4.4.6 混合煤反应性试验数据分析 |
4.4.7 混合煤反应后的损失率 |
4.4.8 小结 |
4.5 本章小结 |
5 混合煤的优化选择及工业试验 |
5.1 混合煤试验方案经济性评价 |
5.2 混合煤试验综合性能评价 |
5.3 混合煤其他条件下的燃烧性能 |
5.3.1 混合煤不同粒度的燃烧试验方案 |
5.3.2 混合煤不同粒度的燃烧试验数据及分析 |
5.3.3 达钢喷吹用混合煤煤粉粒度的选择 |
5.3.4 混合煤不同水分含量的燃烧试验方案 |
5.3.5 混合煤不同水分含量的燃烧试验数据及分析 |
5.3.6 达钢喷吹用混合煤煤粉水分的选择 |
5.3.7 混合煤不同富氧条件的燃烧试验方案 |
5.3.8 混合煤不同富氧条件的燃烧试验数据及分析 |
5.3.9 达钢喷吹用混合煤富氧率的选择 |
5.4 达钢影响喷煤比的因素 |
5.4.1 达钢5#高炉喷煤现状 |
5.4.2 5#高炉影响喷煤比的因素 |
5.4.3 5#高炉提高煤比的措施 |
5.5 工业试验过程及指标 |
5.6 试验方案经济效益计算 |
5.7 本章小结 |
6.结论 |
致谢 |
参考文献 |
附录 |
(5)死料柱对铁水流动状况影响的数值模拟(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 高炉大型化和长寿化现状 |
1.1.1 高炉大型化现状 |
1.1.2 高炉长寿现状 |
1.2 影响高炉长寿的主要因素及相应措施 |
1.2.1 高炉炉身下部侵蚀分析 |
1.2.2 高炉炉缸和炉底侵蚀分析 |
1.2.3 延长高炉寿命的措施 |
1.3 对高炉死料柱的认识 |
1.3.1 死料柱的形状 |
1.3.2 死料柱的形成及原因 |
1.3.3 死料柱的作用 |
1.3.4 降低死料柱负作用的措施 |
1.4 炉缸死料柱受力分析 |
1.4.1 保证死料柱浮起的最小死铁层深度 |
1.4.2 一般情况下死料柱浮起高度 |
1.5 炉缸铁水流动与侵蚀的研究现状 |
1.6 课题研究背景 |
1.7 课题研究目的 |
1.8 课题研究内容 |
第2章 死料柱对铁水流动状况影响的数值模拟模型建立 |
2.1 主要模拟工具FLUENT简介 |
2.2 数学模型的建立 |
2.2.1 炉缸尺寸及主要参数 |
2.2.2 数学模型假设条件 |
2.2.3 模拟计算的边界条件 |
2.2.4 炉缸内铁水流动模型控制方程 |
2.2.5 模拟方法 |
2.2.6 炉缸铁水流动模型网格划分 |
2.2.7 模型在FLUENT软件中求解过程 |
第3章 模拟结果分析与讨论 |
3.1 死料柱浮起高度对铁水流动过程的影响 |
3.1.1 死料柱浮起高度对炉缸铁水流动状态的影响 |
3.1.2 死料柱浮起高度对炉缸铁水流速的影响 |
3.1.3 死料柱浮起高度对炉底剪切应力的影响 |
3.1.4 死料柱浮起高度对炉缸侧壁剪切应力的影响 |
3.2 死料柱孔隙度对铁水流动过程的影响 |
3.2.1 死料柱孔隙度对炉缸铁水流动状态的影响 |
3.2.2 死料柱孔隙度对炉缸铁水流速的影响 |
3.2.3 死料柱孔隙度对炉底剪切应力的影响 |
3.2.4 死料柱孔隙度对炉缸侧壁剪切应力的影响 |
3.3 出铁口流量对铁水流动过程的影响 |
3.3.1 出铁口流量对炉缸铁水流动状态的影响 |
3.3.2 出铁口流量对炉缸铁水流速的影响 |
3.3.3 出铁口流量对炉底剪切应力的影响 |
3.3.4 出铁口流量对炉缸侧壁剪切应力的影响 |
3.4 小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
作者简介 |
学位论文数据集 |
(6)首秦经济炼铁技术的相关基础研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 国内钢铁企业的亏损现状 |
2.2 钢铁企业的工序成本与炼铁的成本构成 |
2.3 铁矿石贸易的价格走势与供求关系 |
2.4 经济炉料基础特性及其高效低成本炼铁研究现状 |
2.4.1 经济炉料的物理特性 |
2.4.2 经济炉料的化学特性 |
2.4.3 烧结原料基础性能 |
2.4.4 高炉原料基础性能 |
2.5 经济炉料炼铁的研究现状 |
2.5.1 烧结配料研究 |
2.5.2 高炉炉料结构研究 |
2.5.3 经济炉料对高炉顺行的影响研究 |
2.6 国内降低炼铁成本的探索与尝试 |
2.6.1 精料炼铁 |
2.6.2 经料炼铁 |
2.7 课题研究目的 |
2.7.1 研究目的 |
2.7.2 研究对象 |
2.7.3 研究内容 |
3 基于高温烧结特性的烧结原料结构与经济配矿研究 |
3.1 研究方法与试验装置 |
3.1.1 同化反应特征数的测定方法 |
3.1.2 流动性能特征数的测定方法 |
3.2 烧结用铁矿粉的高温烧结特性 |
3.2.1 单一铁矿粉的同化反应特性 |
3.2.2 单一铁矿粉的流动性能 |
3.2.3 不同原料结构的混合铁矿粉高温烧结性能 |
3.2.4 不同原料结构的二混混合料高温烧结性能 |
3.3 烧结用铁矿粉的高温烧结特性的表征方法及其特征数研究 |
3.3.1 铁矿粉同化反应性能的新表征方法 |
3.3.2 铁矿粉流动性能的新表征方法 |
3.3.3 单一铁矿粉的同化反应特征数 |
3.3.4 单一铁矿粉的流动性能特征数 |
3.3.5 不同原料结构的混合铁矿粉烧结性能特征数 |
3.3.6 不同原料结构的二混混合料高温烧结性能特征数 |
3.3.7 不同原料结构的混合料烧结性能特征数与结矿转鼓的关系 |
3.4 铁矿粉高温烧结特性及其特征数的影响因素分析 |
3.4.1 不同温度条件下的高温烧结性能及其矿相结构变化 |
3.4.2 化学成分对铁矿粉高温烧结特性的交互影响 |
3.5 基于高温烧结铁性特征数的铁矿粉经济配矿研究 |
3.5.1 基于铁矿粉混合料高温烧结特征数的经济矿配矿研究 |
3.5.2 基于二混混合料高温烧结性能特征数的经济矿配矿研究 |
3.6 小结 |
4 基于高温冶金性能的高炉炉料结构与经济配矿研究 |
4.1 经济炉料炼铁时高炉含铁炉料的高温熔滴性能 |
4.1.1 研究方法与试验装置 |
4.1.2 单一炉料的高温熔滴性能 |
4.1.3 混合炉料的高温熔滴特性 |
4.2 经济炉料炼铁条件下的还原反应时含铁炉料熔化特性 |
4.2.1 研究方法与试验装置 |
4.2.2 还原反应时单一炉料的熔化性能研究 |
4.2.3 还原反应时混合炉料的熔化性能研究 |
4.3 荷重熔滴试验与还原反应试验熔化特性之间的关联性研究 |
4.3.1 熔滴试验中熔滴特征值与荷重熔化参数的关联性 |
4.3.2 熔滴试验荷重熔化参数与还原反应试验熔化参数的关联性 |
4.3.3 熔滴试验熔滴特征值与还原反应试验熔化参数的关联性 |
4.4 还原熔化过程中的矿相结构分析 |
4.4.1 还原熔化试验配碳量的探讨 |
4.4.2 不同温度条件的还原熔化矿相结构 |
4.4.3 不同原料结构的还原熔化矿相结构 |
4.5 烧结-炼铁一体化的最优成本对应的入炉矿合理品位模型 |
4.5.1 烧结-炼铁联动模型的建立 |
4.5.2 联动模型中关键参数的修正 |
4.5.3 理论计算条件下的最优高炉入炉品位和结矿品位的关联性 |
4.5.4 实际生产条件下的最优高炉入炉品位和结矿品位的关联性 |
4.5.5 实际生产条件下的最优高炉入炉品位和块矿品位的关联性 |
4.6 小结 |
5 首秦高炉混焦的高温还原性能和炉缸高温劣化性能研究 |
5.1 高炉混焦的高温还原动力学相关基础研究 |
5.1.1 试验装置和研究方法 |
5.1.2 分段尝试法的机理函数和动力学模型 |
5.1.3 焦炭热性能对铁矿石还原的动力学影响分析和参数计算 |
5.1.4 还原气氛对铁矿石还原的动力学影响分析和参数计算 |
5.1.5 粒度大小对铁矿石还原的动力学影响分析和参数计算 |
5.1.6 焦炭分布方式对铁矿石还原的动力学影响分析和参数计算 |
5.2 高炉炉缸焦炭劣化性能分析 |
5.2.1 试验方案和取样方法 |
5.2.2 炉缸焦炭粒度与理化性能分析 |
5.2.3 炉缸焦炭XRD分析 |
5.2.4 焦炭岩相光学组织分析 |
5.3 碱金属对焦炭劣化的影响研究 |
5.3.1 碱金属分布及最大富集量计算 |
5.3.2 碱金属气氛下焦炭的劣化研究 |
5.3.3 首秦入炉碱负荷控制上限的研究 |
5.4 小结 |
6 高炉喷吹煤的高温燃烧性能研究 |
6.1 高炉喷吹煤的高温燃烧特性研究 |
6.1.1 试验装置与研究方法 |
6.1.2 不同种类煤粉的燃烧特性分析 |
6.1.3 不同粒径煤粉的燃烧特性分析 |
6.2 高煤比条件下煤粉喷吹对风口理燃温度的影响 |
6.2.1 高炉风口理论燃烧温度及其计算公式 |
6.2.2 高炉风口理论燃烧温度计算公式的修正 |
6.2.3 焦炭进入风口回旋区的温度对理论燃烧温度的影响 |
6.2.4 煤粉中SiO_2对理论燃烧温度的影响 |
6.2.5 高炉生产中各主要参数对理论燃烧温度的影响 |
6.3 小结 |
7 首秦焦炭质量与焦炭负荷的高效低成本协同效应研究 |
7.1 优焦优矿的高效低成本协同生产 |
7.1.1 优焦优矿原燃料条件 |
7.1.2 优焦优矿实现焦炭负荷6.0的高效低成本协同生产 |
7.2 不同质量焦炭与经济矿的高效低成本协同生产 |
7.2.1 一级焦与经济矿的高效低成本协同生产 |
7.2.2 二级焦与经济矿的高效低成本协同生产 |
7.2.3 三级焦与经济矿的高效低成本协同生产 |
7.3 小结 |
8 结论与创新点 |
8.1 结论 |
8.2 创新点 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(8)高炉喷煤自动化控制系统的设计与实现(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题研究背景和意义 |
1.1.1 高炉喷煤自动化系统的背景 |
1.1.2 高炉喷煤自动化系统的研究意义 |
1.2 国内外的研究现状 |
1.2.1 国内的研究现状 |
1.2.2 国外的研究现状 |
1.3 研究内容及论文安排 |
第2章 喷煤自动化系统的工艺与需求分析 |
2.1 高炉喷煤工艺 |
2.1.1 煤粉喷吹 |
2.1.2 煤粉的速度调节 |
2.1.3 煤粉重量计量 |
2.1.4 中间罐与喷吹罐压力控制 |
2.2 高炉喷煤自动化系统的需求分析 |
2.3 本章小结 |
第3章 高炉喷煤硬件系统设计 |
3.1 硬件系统结构图 |
3.2 喷煤系统的硬件设计 |
3.2.1 PLC硬件产品的选型设计 |
3.2.2 PLC硬件的特点 |
3.2.3 煤粉制备系统的设备设计 |
3.2.4 煤粉喷吹系统设备设计 |
3.2.5 高炉喷煤系统的PLC硬件设计 |
3.3 本章小结 |
第4章 高炉喷煤软件系统设计 |
4.1 人机接口HMI的设计 |
4.1.1 人机接口界面风格 |
4.1.2 人机接口界面的主要类型 |
4.1.3 人机接口的运行方式 |
4.2 PLC控制系统程序构成及其功能 |
4.2.1 制粉系统主要控制功能 |
4.2.2 喷吹系统主要控制功能 |
4.3 报表系统 |
4.4 本章小结 |
第5章 系统的调试 |
5.1 操作方式测试 |
5.2 IO中转调试 |
5.3 输入滤波调试 |
5.4 关键信号的应急处理 |
5.5 输出信号的界面功能测试 |
5.6 自动化程序模拟与仿真 |
5.7 喷煤系统的软件测试 |
5.8 本章小结 |
结论 |
参考文献 |
致谢 |
(9)包头钢铁公司的创建与技术创新(1953-1965年)(论文提纲范文)
中文摘要 |
Abstract |
1 导论 |
1.1 选题的目的与意义 |
1.2 研究时间、概念界定 |
1.3 文献综述 |
1.3.1 对中国现代工业史的研究 |
1.3.2 对中国现代钢铁工业技术史的相关研究 |
1.3.3 对包钢的研究 |
1.4 研究内容、方法、创新性 |
1.4.1 研究内容 |
1.4.2 研究方法 |
1.4.3 创新点 |
1.5 小结 |
2 建国初期中国钢铁工业发展概况 |
2.1 世界及苏联钢铁工业的发展 |
2.1.1 世界钢铁工业生产概况 |
2.1.2 苏联钢铁工业生产概况 |
2.2 新中国成立初期中国钢铁技术与社会概况 |
2.2.1 现代钢铁工业发展的概况 |
2.2.2 冶炼技术的发展 |
2.2.3 新中国钢铁技术发展的特点 |
2.3 小结 |
3 包钢立项与建设的背景 |
3.1 包钢建设的主要矿产资源 |
3.1.1 白云鄂博矿的发现与勘探 |
3.1.2 解放前日本对白云鄂博矿的勘察与开发计划 |
3.1.3 包钢选矿工艺实验 |
3.1.4 白云鄂博矿在中小高炉上的冶炼实验 |
3.2 国家建设包钢的决策 |
3.2.1 初期建设决策 |
3.2.2 建设方针变更 |
3.2.3 包钢做出“以铁为主,综合利用”方针的决策 |
3.3 党的领导人对包钢建设与发展的决策 |
3.3.1 周恩来总理对包钢建设的重视和决策 |
3.3.2 朱德视察包钢的几点指示 |
3.3.3 乌兰夫担负起建设以包钢为中心的包头工业基地的重任 |
3.3.4 邓小平同志提出“以铁为主,综合利用”的方针 |
3.4 小结 |
4 包钢冶炼技术的引进与创新 |
4.1 高炉建设与炼铁技术 |
4.1.1 投产前的高炉冶炼 |
4.1.2 投产后的高炉冶炼问题 |
4.1.3 炼铁技术经济分析 |
4.1.4 炼铁厂生产技术发展路线受到技术决策的影响 |
4.2 投产初期平炉炼钢生产 |
4.2.1 平炉生产工艺和主要炼钢技术攻关 |
4.2.2 包钢与武钢经济技术指标的对比分析 |
4.2.3 技术决策对包钢炼钢厂技术发展的影响 |
4.3 小结 |
5 “大炼钢铁”运动对包钢建设影响 |
5.1 “大炼钢铁”运动的时代背景 |
5.2 包钢掀起了“大炼钢铁”运动的热潮 |
5.2.1 反浪费运动中包钢被动修改原初设计 |
5.2.2 为国庆献礼提前出铁 |
5.2.3 “大、中、小包钢”一哄而起强行上马 |
5.2.4 包钢开展各种自力更生的技术活动 |
5.3 内蒙古“大炼钢铁”运动对包钢的影响 |
5.3.1 掀起“土法炼铁、炼钢”的高潮 |
5.3.2 呼和浩特钢铁厂的“快上快下” |
5.3.3 内蒙古自治区中小高炉遍地开花 |
5.4 对“大炼钢铁”运动的评价与反思 |
5.4.1 “大炼钢铁”运动对包钢建设的积极作用 |
5.4.2 美好愿望的主观政治倾向引导技术生产决策 |
5.4.3 群众运动性的生产方式影响企业正常生产 |
5.4.4 科学家没有参与企业决策的权力 |
5.4.5 急功近利地追求产量忽视配套发展 |
5.5 小结 |
6 包钢早期技术能力的培养 |
6.1 苏联的工程师及其作用 |
6.1.1 在包钢工作过的苏联工程师 |
6.1.2 苏联工程师工作的特点 |
6.2 本土工程师的培养 |
6.2.1 技术专家领导者的培养 |
6.2.2 成立各类研究机构培养高科研技术力量 |
6.3 技术工人的培养 |
6.3.1 包钢早期技术工人的概况 |
6.3.2 技术工人的培养 |
6.3.3 第一批民族特色钢铁工人的培养 |
6.4 小结 |
7 首任经理杨维对包钢创建的贡献 |
7.1 杨维担任包钢的首任经理 |
7.2 杨维在包钢创建初期所做的工作 |
7.2.1 负责领导筹备包头钢铁公司 |
7.2.2 主持厂区选址、确立包头钢铁公司名称 |
7.2.3 带领职工进入大规模建设 |
7.2.4 对包钢1号高炉出铁的贡献 |
7.3 杨维的科学精神受到批判 |
7.3.1 杨维的科学精神 |
7.3.2 杨维因反对修改设计受到批判 |
7.4 小结 |
8 包钢与武钢技术发展的比较 |
8.1 苏联设计的包钢初步规划与实施方案的对比 |
8.1.1 包钢初步规划与实施结果 |
8.1.2 包钢没有完成规划的主要原因 |
8.2 包钢与武钢建设发展的比较 |
8.2.1 武汉钢铁联合企业基本建设情况 |
8.2.2 包钢与武钢建设的比较 |
8.2.3 包钢与武钢建设的后续发展 |
8.3 小结 |
结语 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文 |
(10)基于多层次模型的炉顶煤气循环氧气高炉可行性研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 高炉炼铁工艺发展现状 |
2.1.1 高炉炼铁节能减排的重要性 |
2.1.2 高炉炼铁发展趋势 |
2.2 氧气高炉工艺特征及研究进展 |
2.2.1 氧气高炉工艺特征 |
2.2.2 国内外典型工艺流程 |
2.3 氧气高炉数学模型研究进展 |
2.3.1 全炉能质守恒模型 |
2.3.2 全炉一维反应动力学模型 |
2.3.3 全炉多维多相流模型 |
2.3.4 风口回旋区燃烧模型 |
2.4 钢铁生产流程的能耗和碳排放研究现状 |
2.4.1 钢铁流程能耗研究现状 |
2.4.2 钢铁流程碳排放研究现状 |
2.5 本文研究内容 |
3 氧气高炉系统工艺模型 |
3.1 工艺模型架构 |
3.2 炉身及炉腹区传输与反应模型 |
3.2.1 模型简化和假设 |
3.2.2 控制方程 |
3.2.3 化学反应及熔融相变动力学 |
3.3 风口回旋区燃烧模型 |
3.3.1 物质平衡 |
3.3.2 能量平衡 |
3.4 炉外煤气能质平衡模型 |
3.5 模型的求解方法 |
3.6 模型的验证 |
3.6.1 莱钢3号高炉的基本参数 |
3.6.2 莱钢3号高炉的解剖实验和模型验证 |
3.6.3 欧盟ULCOS实验氧气高炉的验证分析 |
3.7 本章小结 |
4 氧气高炉可行工艺及关键参数分析 |
4.1 莱钢3号高炉改造方案分析 |
4.1.1 传统高炉与氧气高炉工艺过程的对比 |
4.1.2 莱钢3号高炉改造方案的选择 |
4.2 氧气高炉关键技术参数分析 |
4.2.1 基本工艺参数的限定范围 |
4.2.2 关键技术参数的正交试验 |
4.2.3 关键技术参数的直观分析 |
4.3 氧气高炉典型工况能耗和碳流分析 |
4.3.1 氧气高炉工艺的典型工况 |
4.3.2 工序能耗分析 |
4.3.3 工序碳流分析 |
4.4 本章小结 |
5 氧气高炉炉内关键过程研究 |
5.1 炉料下降运动行为实验研究 |
5.1.1 实验平台的搭建及实验方法 |
5.1.2 基本工况实验结果 |
5.1.3 参数分析 |
5.2 风口煤粉燃烧研究 |
5.2.1 风口回旋区燃烧模型 |
5.2.2 回旋区内燃烧过程数值模拟 |
5.3 煤气循环对炉内热化学过程的影响 |
5.3.1 炉内传输与反应过程模型 |
5.3.2 结果分析 |
5.4 本章小结 |
6 氧气高炉工艺对钢铁全流程能耗和碳排放的影响 |
6.1 钢铁流程的物质流、能量流模型 |
6.1.1 钢铁流程的物质流、能量流模型框架 |
6.1.2 钢铁流程的物质流、能量流平衡 |
6.1.3 钢铁流程能耗和碳排放的计算方法 |
6.2 氧气高炉钢铁流程的物质流和能量流 |
6.2.1 物质流和能量流分析 |
6.2.2 副产煤气平衡 |
6.2.3 电力平衡 |
6.3 钢铁流程能耗和碳排放分析 |
6.3.1 流程能耗分析 |
6.3.2 流程碳排放分析 |
6.4 本章小结 |
7 结论 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
四、武钢5号高炉煤粉喷吹系统的改造(论文参考文献)
- [1]柳钢2号高炉冶炼技术的进步[J]. 阎峰,莫朝兴,郑镇鹏,贝纪承. 炼铁, 2020(02)
- [2]包钢4150m3高炉风口曲损的分析研究与治理[D]. 刘璐. 内蒙古科技大学, 2019(03)
- [3]高炉风口回旋区流动与燃烧特性研究[D]. 丁冬冬. 东南大学, 2019(06)
- [4]提高达钢5#高炉喷煤量的研究[D]. 邓孝天. 西安建筑科技大学, 2019(06)
- [5]死料柱对铁水流动状况影响的数值模拟[D]. 梁为秋. 华北理工大学, 2019(01)
- [6]首秦经济炼铁技术的相关基础研究[D]. 朱利. 北京科技大学, 2019(02)
- [7]首钢京唐5500m3高炉浓相喷煤自动控制系统的优化实践[A]. 张少伟,余赋,刘洋,李昕洋,范旭庚,杜建华. 2017年全国高炉炼铁学术年会论文集(下), 2017
- [8]高炉喷煤自动化控制系统的设计与实现[D]. 孙炎. 北京工业大学, 2017(07)
- [9]包头钢铁公司的创建与技术创新(1953-1965年)[D]. 武月清. 内蒙古师范大学, 2016(12)
- [10]基于多层次模型的炉顶煤气循环氧气高炉可行性研究[D]. 金鹏. 北京科技大学, 2016(05)